17.已知命題p:若m>0,則關(guān)于 x的方程x2+x-m=0有實(shí)根,q是p的逆命題,下面結(jié)論正確的是( 。
A.p真q假B.p 假q真C.p真q真D.p 假q假

分析 方程x2+x-m=0有實(shí)根可得△=1+4m≥0,解得$m≥-\frac{1}{4}$,從而可判斷命題p,q的真假.

解答 解:P:當(dāng)m>0時(shí),△=1+4m≥0,解得$m≥-\frac{1}{4}$,此時(shí)方程x2+x-m=0有實(shí)根,故p為真命題,
q:p的逆命題:若x2+x-m=0有實(shí)根,則△=1+4m≥0,解得m≥-$\frac{1}{4}$,q為假命題.
故選:A.

點(diǎn)評(píng) 本題主要考查一元二次方程的根的存在條件的應(yīng)用,要判斷方程的根是否存在只要檢驗(yàn)△的取值符號(hào),還要注意命題真假判斷及命題的逆命題的求解,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.命題p:若λ$\overrightarrow{a}$=0,則$\overrightarrow{a}$=0;命題q:?x0>0,使得x0-1-lnx0=0,則下列命題為真命題的是( 。
A.p∧qB.p∨(¬q)C.(¬p)∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.用數(shù)學(xué)歸納法證明“(n+1)(n+2)(n+3)…(n+n)=2n•1•3…(2n-1)”(n∈N+)時(shí),從“n=k到n=k+1”時(shí),左邊應(yīng)增添的式子是(  )
A.2k+1B.2(2k+1)C.$\frac{2k+1}{k+1}$D.$\frac{2k+2}{k+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,PA⊥平面ABCD,PA=BC=1,AB=$\sqrt{2}$,F(xiàn)是BC的中點(diǎn).
(Ⅰ)求證:DA⊥平面PAC
(Ⅱ)PD的中點(diǎn)為G,求證:CG∥平面PAF
(Ⅲ)求三棱錐A-CDG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知拋物線C:y2=4x的焦點(diǎn)為F,過點(diǎn)F的動(dòng)直線交拋物線C于A、B兩點(diǎn),則原點(diǎn)P到直線l的距離最大時(shí),弦AB的長(zhǎng)度為( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若雙曲線的漸近線為y=±$\sqrt{3}$x,則它的離心率可能是( 。
A.$\sqrt{3}$B.2C.$\sqrt{3}$或$\frac{2\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.滿足{2,3}⊆M⊆{1,2,3,4,5}的集合M的個(gè)數(shù)為(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.?dāng)?shù)列{an}是公比為q(q>1)的等比數(shù)列,其前n項(xiàng)和為Sn.已知S3=7,且3a2是a1+3與a3+4的等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)bn=$\frac{1}{lo{g}_{2}{a}_{n+1}}$,cn=bn(bn+1-bn+2),求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=lnx,g(x)=f(x)+ax2-(2a+1)x
(1)當(dāng)a>0時(shí),討論函數(shù)g(x)的單調(diào)性;
(2)設(shè)斜率為k的直線與函數(shù)f(x)的圖象交于A(x1,y1),B(x2,y2)兩點(diǎn),其中x1<x2,證明$\frac{1}{{x}_{2}}<k<\frac{1}{{x}_{1}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案