分析 (Ⅰ)依題意,可得,$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}q+{a}_{1}{q}^{2}=7}\\{6{a}_{1}q={a}_{1}+3+{a}_{1}{q}^{2}+4}\end{array}\right.$,解得首項(xiàng)與公比,即可求得等比數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)由an=2n-1可得bn=$\frac{1}{lo{g}_{2}{a}_{n+1}}$=$\frac{1}{n}$,cn=bn(bn+1-bn+2)=($\frac{1}{n}$-$\frac{1}{n+1}$)-$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),利用裂項(xiàng)法與分組求和法即可求得數(shù)列{cn}的前n項(xiàng)和Tn.
解答 解:(Ⅰ)依題意,$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}q+{a}_{1}{q}^{2}=7}\\{6{a}_{1}q={a}_{1}+3+{a}_{1}{q}^{2}+4}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{a}_{1}=1}\\{q=2}\end{array}\right.$,
∴數(shù)列{an}的通項(xiàng)公式an=2n-1;
(Ⅱ)∵bn=$\frac{1}{lo{g}_{2}{a}_{n+1}}$=$\frac{1}{n}$,cn=bn(bn+1-bn+2)=$\frac{1}{n}$($\frac{1}{n+1}$-$\frac{1}{n+2}$)=($\frac{1}{n}$-$\frac{1}{n+1}$)-$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
∴Tn=c1+c2+…+cn=[(1-$\frac{1}{2}$)-$\frac{1}{2}$($\frac{1}{1}$-$\frac{1}{3}$)]+[($\frac{1}{2}$-$\frac{1}{3}$)-$\frac{1}{2}$($\frac{1}{2}$-$\frac{1}{4}$)]+…+[($\frac{1}{n}$-$\frac{1}{n+1}$)-$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$)]
=(1-$\frac{1}{n+1}$)-$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n}$-$\frac{1}{n+2}$)
=$\frac{n}{n+1}$-$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)
=$\frac{1}{4}$-$\frac{1}{{2n}^{2}+6n+4}$.
點(diǎn)評(píng) 本題考查數(shù)列的求和,考查等差數(shù)列的通項(xiàng)公式與求和公式的應(yīng)用,突出考查裂項(xiàng)法求和與分組求和,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {0} | B. | {1} | C. | {0,1} | D. | [0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | p真q假 | B. | p 假q真 | C. | p真q真 | D. | p 假q假 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 當(dāng)-2<a<2時(shí),函數(shù)f(x)無(wú)極值 | B. | 當(dāng)a>2時(shí),f(x)的極小值小于0 | ||
C. | 當(dāng)a=2時(shí),x=1是f(x)的一個(gè)極值點(diǎn) | D. | ?a∈R,f(x)必有零點(diǎn) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{5π}{21}$,0) | B. | ($\frac{π}{21}$,0) | C. | ($\frac{π}{42}$,0) | D. | (0,$\frac{\sqrt{3}}{3}$) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com