【題目】已知函數(shù) 的部分圖象如圖所示,分別是圖象的最低點(diǎn)和最高點(diǎn),.
(1)求函數(shù)的解析式;
(2)將函數(shù)的圖象向左平移個單位長度,再把所得圖象上各點(diǎn)橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,求函數(shù)的單調(diào)遞增區(qū)間.
【答案】(1);(2)
【解析】分析:(1)由可求,再由,,,可求得A,繼而可求,于是可求函數(shù)的解析式;
(2)通過平移變換可得,則,從而即可求得函數(shù)的單調(diào)遞增區(qū)間.
詳解:(1)由圖象可得: ,所以的周期.
于是,得,
又,∴∴,
又將代入得,,
所以,即,
由得,,
∴.
(2)將函數(shù)的圖象沿軸方向向左平移個單位長度,
得到的圖象對應(yīng)的解析式為:,
再把所得圖象上各點(diǎn)橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變),得到的圖象對應(yīng)的解析式為,
由,得,,,
∴函數(shù)的單調(diào)遞增區(qū)間為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩點(diǎn)及,點(diǎn)在以、為焦點(diǎn)的橢圓上,且、、構(gòu)成等差數(shù)列.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)是過原點(diǎn)的直線,是與n垂直相交于點(diǎn),與橢圓相交于兩點(diǎn)的直線,,是否存在上述直線使成立?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將五個1,五個2,五個3,五個4,五個5共25個數(shù)填入一個5行5列的表格內(nèi)(每格填入一個數(shù)),使得同一行中任何兩數(shù)之差的絕對值不超過2,考查每行中五個數(shù)之和,記這五個和的最小值為,則的最大值為( )
A. B. 9 C. 10 D. 11
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為直線上的動點(diǎn),過點(diǎn)作圓的兩條切線,切點(diǎn)分別為,則四邊形為圓心的面積的最小值為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線:與軸相交于點(diǎn),點(diǎn)坐標(biāo)為,過點(diǎn)作直線的垂線,交直線于點(diǎn).記過、、三點(diǎn)的圓為圓.
(1)求圓的方程;
(2)求過點(diǎn)與圓相交所得弦長為8的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】具有性質(zhì):的函數(shù),我們稱為滿足“倒負(fù)”變換的函數(shù)。給出下列函數(shù):
① ② ③ 其中滿足“倒負(fù)”變換的函數(shù)是()
A. ①② B. ①③ C. ②③ D. ①
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是實(shí)數(shù),
(1)證明:f(x)是增函數(shù);
(2)試確定的值,使f(x)為奇函數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的奇函數(shù),且,若且時,有成立.
(1)判斷在上的單調(diào)性,并用定義證明;
(2)解不等式;
(3)若對所有的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于 兩點(diǎn),且.
(1)求該拋物線的方程;
(2)過點(diǎn)任意作互相垂直的兩條直線,分別交曲線于點(diǎn)和.設(shè)線段的中點(diǎn)分別為,求證:直線恒過一個定點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com