【題目】已知兩點(diǎn),點(diǎn)在以、為焦點(diǎn)的橢圓上,且、、構(gòu)成等差數(shù)列.

求橢圓C的方程;

設(shè)是過(guò)原點(diǎn)的直線,是與n垂直相交于點(diǎn),與橢圓相交于兩點(diǎn)的直線,,是否存在上述直線使成立?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1);(2)答案見(jiàn)解析.

【解析】試題分析:構(gòu)成等差數(shù)列可得, ,.又,,從而可得結(jié)果;(先證明當(dāng)軸垂直時(shí),不合題意,當(dāng)x軸不垂直時(shí),設(shè)的方程為,由垂直相交于 點(diǎn)且,得,利用韋達(dá)定理以及平面向量數(shù)量積公式,可得,矛盾,故此時(shí)的直線也不存在.

.試題解析(Ⅰ)依題意,設(shè)橢圓的方程為

構(gòu)成等差數(shù)列,

,

橢圓的方程為.

(Ⅱ)設(shè)兩點(diǎn)的坐標(biāo)分別為,,

假設(shè)存在直線使成立,

(ⅰ)當(dāng)軸垂直時(shí),滿足的直線的方程為

當(dāng)時(shí),的坐標(biāo)分別為,,

當(dāng)時(shí),同理可得,

即此時(shí)的直線不存在.

(ⅱ)當(dāng)軸不垂直時(shí),設(shè)的方程為,

垂直相交于點(diǎn)且,得.

因?yàn)?/span>,,

,.

代入橢圓方程,得

由根與系數(shù)的關(guān)系得: ,

,矛盾,故此時(shí)的直線也不存在.

綜上可知,使成立的直線不存在.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系xoy中,其中A(0,0),B(2,0),C(1,1),D(0,1),圖中圓弧所在圓的圓心為點(diǎn)C,半徑為且點(diǎn)P在圖中陰影部分(包括邊界)運(yùn)動(dòng).,其中,則 的取值范圍是(

A. [2,3+] B. [2,3+] C. [3-, 3+] D. [3-, 3+]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】4月23日是“世界讀書(shū)日”,某中學(xué)在此期間開(kāi)展了一系列的讀書(shū)教育活動(dòng),為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對(duì)其課外閱讀時(shí)間進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:min)的頻率分布直方圖,若將日均課外閱讀時(shí)間不低于60 min的學(xué)生稱為“書(shū)蟲(chóng)”,低于60 min的學(xué)生稱為“懶蟲(chóng)”,

(1)求x的值并估計(jì)全校3 000名學(xué)生中“書(shū)蟲(chóng)”大概有多少名學(xué)生?(將頻率視為概率)

(2)根據(jù)已知條件完成下面2×2的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“書(shū)蟲(chóng)”與性別有關(guān):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量(單位:噸)對(duì)價(jià)格(單位:千元/噸)和利潤(rùn)的影響,對(duì)近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價(jià)格統(tǒng)計(jì)如下表:

1

2

3

4

5

7.0

6.5

5.5

3.8

2.2

已知具有線性相關(guān)關(guān)系.

(Ⅰ)求關(guān)于的線性回歸方程;

(Ⅱ)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測(cè)當(dāng)年產(chǎn)量為多少噸時(shí),年利潤(rùn)取到最大值?(保留一位小數(shù))

參考數(shù)據(jù)及公式: , ,

, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在原點(diǎn)的雙曲線 的右焦點(diǎn)為 ,右頂點(diǎn)為 ,( 為原點(diǎn))

(1)求雙曲線 的方程;

(2)若直線 與雙曲線恒有兩個(gè)不同的交點(diǎn) ,且,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在幾何體中,四邊形為菱形,對(duì)角線的交點(diǎn)為,四邊形為梯形, .

(Ⅰ)若,求證: 平面;

(Ⅱ)求證:平面平面;

(Ⅲ)若 , ,求與平面所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí),記函數(shù)的極小值為,若恒成立,求滿足條件的最小整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的離心率為,且過(guò)點(diǎn).

(1)求橢圓的方程;

(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓恒有兩個(gè)交點(diǎn), 且為坐標(biāo)原點(diǎn))?若存在,寫出該圓的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 的部分圖象如圖所示,分別是圖象的最低點(diǎn)和最高點(diǎn),.

(1)求函數(shù)的解析式;

(2)將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,再把所得圖象上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案