【題目】已知為常數(shù)).

1)當(dāng)時(shí),求函數(shù)的單調(diào)性;

2)當(dāng)時(shí),求證:

3)試討論函數(shù)零點(diǎn)的個(gè)數(shù).

【答案】1上單調(diào)遞增,在上單調(diào)遞減2見(jiàn)解析3見(jiàn)解析

【解析】試題分析:(1)將參數(shù)值代入得到函數(shù)表達(dá)式,求導(dǎo)研究導(dǎo)函數(shù)的正負(fù)即可;(2),由題意即證,當(dāng)時(shí), ,對(duì)函數(shù)求導(dǎo)研究單調(diào)性求最值即可;(3)直接對(duì)函數(shù)求導(dǎo),研究函數(shù)的單調(diào)性,得到函數(shù)的變化趨勢(shì),結(jié)合圖像討論函數(shù)的零點(diǎn)個(gè)數(shù)。

解析:

1)解當(dāng)時(shí), ,所以),

當(dāng)時(shí), ;當(dāng)時(shí), ;

上單調(diào)遞增,在上單調(diào)遞減.

(2)證明:記,

由題意即證,當(dāng)時(shí),

),

,則,

所以上恒成立,則上單調(diào)遞減,

,即證.

3由題意, ).

①若,則,故上單調(diào)遞增,

又因?yàn)?/span>,且,

由零點(diǎn)存在性定理知, 上有且只有一個(gè)零點(diǎn). 

②若,當(dāng) ,則上單調(diào)遞增;

當(dāng), ,則上單調(diào)遞減,

所以, 上的極大值點(diǎn),也是最大值點(diǎn), .

(i)當(dāng),即, 恒成立,則上無(wú)零點(diǎn);

(ii)當(dāng),即 ,則上有一個(gè)零點(diǎn);

(iii)當(dāng),即 ,

而當(dāng)時(shí),有,理由如下:令),則,

所以上單調(diào)遞增, ,即. 

,由(2)知,而,

上的單調(diào)性及零點(diǎn)存在性定理可知, 分別在上各有一個(gè)零點(diǎn),即上有兩個(gè)零點(diǎn).

綜上所述,當(dāng)時(shí), 上有一個(gè)零點(diǎn);

當(dāng)時(shí), 上有兩個(gè)零點(diǎn);

當(dāng)時(shí), 上沒(méi)有零點(diǎn)..

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中, 兩兩垂直且相等,過(guò)的中點(diǎn)作平面,且分別交PB,PCM、N,交的延長(zhǎng)線于

)求證: 平面

)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知復(fù)數(shù)z,(m∈R,i是虛數(shù)單位).

(1)若z是純虛數(shù),求m的值;

(2)設(shè)z的共軛復(fù)數(shù),復(fù)數(shù)+2z在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第一象限,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),且離心率為

)求橢圓的方程.

)已知雙曲線的離心率是橢圓的離心率的倒數(shù),其頂點(diǎn)為橢圓的焦點(diǎn),求雙曲線的方程.

)設(shè)直線與雙曲線交于, 兩點(diǎn),過(guò)的直線與線段有公共點(diǎn),求直線的傾斜角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)對(duì)男女學(xué)生是否喜愛(ài)古典音樂(lè)進(jìn)行了一個(gè)調(diào)查,調(diào)查者對(duì)學(xué)校高三年級(jí)隨機(jī)抽取了100名學(xué)生,調(diào)查結(jié)果如表:

喜愛(ài)

不喜愛(ài)

總計(jì)

男學(xué)生

60

80

女學(xué)生

總計(jì)

70

30

附:K2=

P(K2≥k0

0.100

0.050

0.010

k0

2.706

3.841

6.635


(1)完成如表,并根據(jù)表中數(shù)據(jù),判斷是否有95%的把握認(rèn)為“男學(xué)生和女學(xué)生喜歡古典音樂(lè)的程度有差異”;
(2)從以上被調(diào)查的學(xué)生中以性別為依據(jù)采用分層抽樣的方式抽取10名學(xué)生,再?gòu)倪@10名學(xué)生中隨機(jī)抽取5名學(xué)生去某古典音樂(lè)會(huì)的現(xiàn)場(chǎng)觀看演出,求正好有X個(gè)男生去觀看演出的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示是某條公共汽車路線收支差額y與乘客量x的圖象(收支差額=車票收入—支出費(fèi)用)由于目前本條線路在虧損,公司有關(guān)人員提出了兩條建議:

建議(Ⅰ)是不改變車票價(jià)格,減少支出費(fèi)用;建議(Ⅱ)是不改變支出費(fèi)用,提高車票價(jià)格. 圖中虛線表示調(diào)整前的狀態(tài),實(shí)線表示調(diào)整后的狀態(tài). 在上面四個(gè)圖象中

A. ①反映了建議(),③反映了建議() B. ①反映了建議(),③反映了建議()

C. ②反映了建議(),④反映了建議() D. ④反映了建議(),②反映了建議()

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),短軸長(zhǎng)為,點(diǎn)在橢圓上.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若斜率為的直線與橢圓交于 兩點(diǎn), 為弦中點(diǎn),求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】微信支付誕生于微信紅包,早期知識(shí)作為社交的一部分“發(fā)紅包”而誕生的,在發(fā)紅包之余才發(fā)現(xiàn),原來(lái)微信支付不僅可以用來(lái)發(fā)紅包,還可以用來(lái)支付,現(xiàn)在微信支付被越來(lái)越多的人們所接受,現(xiàn)從某市市民中隨機(jī)抽取300為對(duì)是否使用微信支付進(jìn)行調(diào)查,得到下列的列聯(lián)表:

年輕人

非年輕人

總計(jì)

經(jīng)常使用微信支付

165

225

不常使用微信支付

合計(jì)

90

300

根據(jù)表中數(shù)據(jù),我們得到的統(tǒng)計(jì)學(xué)的結(jié)論是:由__________的把握認(rèn)為“使用微信支付與年齡有關(guān)”。

其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若函數(shù)在定義域內(nèi)為增函數(shù),求實(shí)數(shù)的取值范圍;

2)在(1)的條件下,若, , ,求的極小值;

3)設(shè), .若函數(shù)存在兩個(gè)零點(diǎn),且滿足,問(wèn):函數(shù)處的切線能否平行于軸?若能,求出該切線方程,若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案