【題目】如圖,在三棱錐中, 兩兩垂直且相等,過的中點作平面∥,且分別交PB,PC于M、N,交的延長線于.
(Ⅰ)求證: 平面;
(Ⅱ)若,求二面角的余弦值.
【答案】(Ⅰ)證明見解析;(Ⅱ) .
【解析】試題分析:(Ⅰ)運用線面垂直的判定和性質定理,以及線面平行的性質定理,即可得證;
(Ⅱ)以CA,CB,CP分別為x,y,z軸建立空間直角坐標系,并設BC=2,求出點A,B,P,D,E,F(xiàn)的坐標,設平面PAB的法向量和平面DEF的法向量,由向量垂直的條件:數(shù)量積為0,即可得到法向量,再由向量的夾角公式,即可得到所求二面角的余弦值.
解析:
(1)證明:由BC⊥PC,BC⊥AC可知:BC⊥平面PAC,
又因為平面α∥BC,平面AEF過BC且與平面α交于EF,
所以EF∥BC.故EF⊥平面PAC;
(2)以CA,CB,CP分別為x,y,z軸建立空間直角坐標系,
并設BC=2.則A(2,0,0),B(0,2,0),P(0,0,2),
設平面PAB的法向量,
D(1,0,1),E(﹣1,3,0),F(xiàn)(﹣1,0,0),
設平面DEF的法向量,
二面角P﹣DM﹣N的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), 是函數(shù)的導函數(shù),則的圖象大致是( )
A. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/8f50d3dfba9b485fac00e42a95909498.png] B. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/74ae44978a70424c961e850ed79072da.png]
C. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/2f113f7ec5294ba0bbd1f66b13f3e152.png] D. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/dbaa9025ccdb497380b769e5396c4c19.png]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓過定點且與定直線相切,動圓圓心的軌跡為曲線.
(Ⅰ)求曲線的方程;
(Ⅱ)已知斜率為的直線交軸于點,且與曲線相切于點,設的中點為(其中為坐標原點).求證:直線的斜率為0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點分別為, ,且經(jīng)過點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)的頂點都在橢圓上,其中關于原點對稱,試問能否為正三角形?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 中, , 分別是的中點,將沿折起成,使面面, 分別是和的中點,平面與, 分別交于點.
(1)求證: ;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓的經(jīng)過中心的弦稱為橢圓的一條直徑,平行于該直徑的所有弦的中點的軌跡為一條線段,稱為該直徑的共軛直徑,已知橢圓的方程為.
(1)若一條直徑的斜率為,求該直徑的共軛直徑所在的直線方程;
(2)若橢圓的兩條共軛直徑為和,它們的斜率分別為,證明:四邊形的面積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中, 為正三角形,平面底面,底面為梯形, , , , , ,點在棱上,且.
求證:(1)平面平面;
(2)求證: 平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知(為常數(shù)).
(1)當時,求函數(shù)的單調性;
(2)當時,求證: ;
(3)試討論函數(shù)零點的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com