精英家教網 > 高中數學 > 題目詳情

已知某幾何體的俯視圖是如圖所示的矩形,正視圖(或稱主視圖)是一個底邊長為8、高為4的等腰三角形,側視圖(或稱左視圖)是一個底邊長為6、高為4的等腰三角形.

(1)求該幾何體的體積V;
(2)求該幾何體的側面積S.

(1)64(2).

解析試題分析:由題設可知,幾何體是一個高為4的四棱錐,其底面是長、寬分別為8和6的矩形,正側面及其相對側面均為底邊長為8,高為的等腰三角形,左、右側面均為底邊長為6,高為的等腰三角形.
(1)幾何體的體積為為.
(2)正側面及相對側面底邊上的高為:,
左、右側面的底邊上的高為:.
故幾何體的側面面積為:S = 2×(×8×5+×6×4).
考點:三視圖,幾何體的體積
點評:解決該試題的關鍵是還原幾何體,并根據體積公式和側面積公式求解結論,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖所示,在直三棱柱中,的中點.

(Ⅰ) 若AC1⊥平面A1BD,求證:B1C1⊥平面ABB1A1;
(Ⅱ)在(Ⅰ)的條件下,設AB=1,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,底面為等腰直角三角形,ACBC,點DAB的中點,側面BB1C1C是正方形.

(1) 求證ACB1C;(2)求二面角B-CD-B1平面角的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)如圖,在直三棱柱中,,分 別是棱上的點(點 不同于點),且的中點.

求證:(1)平面平面(2)直線平面

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在棱長為1的正方體中.

(1)求異面直線所成的角;
(2)求證平面⊥平面

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題12分)如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長AB=2,側棱BB1的長為4,過點B作B1C的垂線交側棱CC1于點E,交B1C于點F,
⑵    證:平面A1CB⊥平面BDE;
⑵求A1B與平面BDE所成角的正弦值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分13分)如圖是某直三棱柱(側棱與底面垂直)被削去上底后的直觀圖與三視圖的側視圖,俯視圖,在直觀圖中,MBD的中點,NBC的中點,側視圖是直角梯形,俯視圖是等腰直角三角形,有關數據如圖所示.

(1)求該幾何體的體積;
(2)求證:AN∥平面CME;
(3)求證:平面BDE⊥平面BCD

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(12分)直三棱柱中,點M、N分別為線段的中點,平面側面  
(1)求證:MN//平面     (2)證明:BC平面

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)
在三棱錐中,都是邊長為的等邊三角形,,分別是的中點.
(1)求證:平面;
(2)求證:平面⊥平面;
(3)求三棱錐的體積.

查看答案和解析>>

同步練習冊答案