如圖所示,在直三棱柱中,,為的中點.
(Ⅰ) 若AC1⊥平面A1BD,求證:B1C1⊥平面ABB1A1;
(Ⅱ)在(Ⅰ)的條件下,設(shè)AB=1,求三棱錐的體積.
(I)通過證明“線線垂直”,得到“線面垂直”,⊥面,得到.
又在直棱柱中,,得到⊥平面.
(II)三棱錐的體積.
解析試題分析:(I)(I)通過證明“線線垂直”,得到“線面垂直”,⊥面,得到.
又在直棱柱中,,得到⊥平面.
(II)為確定三棱錐的體積,應(yīng)注意明確“底面”“高”,注意遵循“一作,二證,三計算”的解題步驟.通過證明“平面”.明確就是三棱錐的高.
解答此類問題,容易出現(xiàn)的錯誤是忽視證明,利用直觀感覺確定高.
試題解析:(I)直三棱柱中,∵,∴四邊形為正方形,
∴,
又∵面,∴,∴⊥面,∴.
又在直棱柱中,,∴B1C1⊥平面ABB1A1.
(II)∵,為的中點,∴.
∴平面.
∴就是三棱錐的高.
由(I)知B1C1⊥平面ABB1A1,∴平面ABB1A1.
∴.∴是直角等腰三角形.
又∵,∴,
∴,
∴三棱錐的體積.
考點:垂直關(guān)系、體積計算.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐的底面是正方形,底面,,,點、分別為棱、的中點.
(1)求證:平面;
(2)求證:平面平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知四棱錐平面,底面為直角梯形,,且,.
(1)點在線段上運動,且設(shè),問當(dāng)為何值時,平面,并證明你的結(jié)論;
(2)當(dāng)面,且,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,△中,,,,在三角形內(nèi)挖去一個半圓(圓心在邊上,半圓與、分別相切于點、,與交于點),將△繞直線旋轉(zhuǎn)一周得到一個旋轉(zhuǎn)體。
(1)求該幾何體中間一個空心球的表面積的大;
(2)求圖中陰影部分繞直線旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱ABC—A1B1C1的側(cè)棱AA1⊥底面ABC,∠ACB = 90°,E是棱CC1上中點,F(xiàn)是AB中點,AC = 1,BC = 2,AA1 = 4.
(1)求證:CF∥平面AEB1;(2)求三棱錐C-AB1E的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C丄平面ABCD,且AB=BC=CA=,AD=CD=1.
求證:BD⊥AA1;
若四邊形是菱形,且,求四棱柱的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點,PA=2AB=2.
(Ⅰ)若F為PC的中點,求證PC⊥平面AEF;
(Ⅱ)求四棱錐P-ABCD的體積V.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知某幾何體的俯視圖是如圖所示的矩形,正視圖(或稱主視圖)是一個底邊長為8、高為4的等腰三角形,側(cè)視圖(或稱左視圖)是一個底邊長為6、高為4的等腰三角形.
(1)求該幾何體的體積V;
(2)求該幾何體的側(cè)面積S.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com