精英家教網 > 高中數學 > 題目詳情

已知函數
(I)求函數的單調區(qū)間;
(Ⅱ)若,試解答下列兩小題.
(i)若不等式對任意的恒成立,求實數的取值范圍;
(ii)若是兩個不相等的正數,且以,求證:

(I)①當時,遞增區(qū)間是;②當時,遞增區(qū)間是,遞減區(qū)間為;(Ⅱ)(i)實數的取值范圍為;(ii)詳見試題解析.

解析試題分析:(I)首先求函數的定義域,再求的導數,令下面分討論求函數的單調區(qū)間;(Ⅱ)(i)先由已知條件,將問題轉化為求函數的導數:,由此討論可得上為減函數,從而求得實數的取值范圍;(ii)先根據已知條件把化簡為,只要證,構造函數利用導數可得上單調遞減,在上單調遞增,最終證得
試題解析:(I)解:函數的定義域為
①當時,上恒成立,∴遞增區(qū)間是;
②當時,由可得,∴遞增區(qū)間是,遞減區(qū)間為.                                    (6分)
(Ⅱ)(i)解:設
上恒成立,∴上為減函數,∴實數的取值范圍為.                              (10分)
(ii)證明:
.設,則
,得上單調遞減,在上單調遞增
.               (15分)
考點:1.導數與函數的單調性;2.利用導數求恒成立問題中的參數取值范圍問題參數;3.利用導數證明不等式.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數,
(1)求證:函數上單調遞增;
(2)設,若直線軸,求兩點間的最短距離.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數上為增函數,且,,
(1)求的值;
(2)當時,求函數的單調區(qū)間和極值;
(3)若在上至少存在一個,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知
(1) 求函數上的最小值;
(2) 若對一切恒成立,求實數的取值范圍;
(3) 證明:對一切,都有成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求處切線方程;
(2)求證:函數在區(qū)間上單調遞減;
(3)若不等式對任意的都成立,求實數的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,
(Ⅰ)若,求函數的極值;
(Ⅱ)若函數上單調遞減,求實數的取值范圍;
(Ⅲ)在函數的圖象上是否存在不同的兩點,使線段的中點的橫坐標與直線的斜率之間滿足?若存在,求出;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(I)討論函數的單調性;
(Ⅱ)當時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數若函數在x = 0處取得極值.
(1) 求實數的值;
(2) 若關于x的方程在區(qū)間[0,2]上恰有兩個不同的實數根,求實數的取值范圍;
(3) 證明:對任意的自然數n,有恒成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,且.
(1)求函數的表達式;
(2)當時,不等式上恒成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案