已知函數(shù)上為增函數(shù),且,,
(1)求的值;
(2)當(dāng)時,求函數(shù)的單調(diào)區(qū)間和極值;
(3)若在上至少存在一個,使得成立,求的取值范圍.

(1);
(2)函數(shù)的單調(diào)遞增區(qū)間是,遞減區(qū)間為,極大值;
(3)的取值范圍為

解析試題分析:(1)利用上恒成立,
轉(zhuǎn)化成上恒成立,從而只需,
,結(jié)合正弦函數(shù)的有界性,得到,求得;
(2)研究函數(shù)的單調(diào)性、極值,一般遵循“求導(dǎo)數(shù),求駐點,討論區(qū)間導(dǎo)數(shù)值的正負,確定單調(diào)性及極值”,利用“表解法”,往往形象直觀,易于理解.
(3)構(gòu)造函數(shù),
討論,時,的取值情況,根據(jù)上恒成立,得到上單調(diào)遞增,利用大于0,求得.
試題解析:(1)由已知上恒成立,
,∵,∴
上恒成立,只需,
,∴只有,由;            4分
(2)∵,∴,,
,
,則,
,的變化情況如下表:






+
0



極大值
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)若是函數(shù)的極值點,是函數(shù)的兩個不同零點,且,求;
(2)若對任意,都存在為自然對數(shù)的底數(shù)),使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù),過曲線上的點的切線方程為.
(1)若時有極值,求的表達式;
(2)在(1)的條件下,求在[-3,1]上的最大值;
(3)若函數(shù)在區(qū)間[-2,1]上單調(diào)遞增,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義在上的函數(shù),其中為常數(shù).
(1)當(dāng)是函數(shù)的一個極值點,求的值;
(2)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)的取值范圍;
(3)當(dāng)時,若,在處取得最大值,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)若存在,使得成立,求滿足上述條件的最大整數(shù);
(3)如果對任意的,都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)=xlnx.
(I)求f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)證明:都有。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)的導(dǎo)數(shù)為,若函數(shù)的圖象關(guān)于直線對稱,且函數(shù)處取得極值.
(I)求實數(shù)的值;
(II)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(I)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,試解答下列兩小題.
(i)若不等式對任意的恒成立,求實數(shù)的取值范圍;
(ii)若是兩個不相等的正數(shù),且以,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),為實數(shù))有極值,且在處的切線與直線平行.
(Ⅰ)求實數(shù)a的取值范圍;
(Ⅱ)是否存在實數(shù)a,使得函數(shù)的極小值為1,若存在,求出實數(shù)a的值;若不存在,請說明理由;
(Ⅲ)設(shè)函數(shù)試判斷函數(shù)上的符號,并證明:
).

查看答案和解析>>

同步練習(xí)冊答案
<noscript id="oyy28"><tbody id="oyy28"></tbody></noscript>