精英家教網 > 高中數學 > 題目詳情

函數,過曲線上的點的切線方程為.
(1)若時有極值,求的表達式;
(2)在(1)的條件下,求在[-3,1]上的最大值;
(3)若函數在區(qū)間[-2,1]上單調遞增,求實數b的取值范圍.

(1);(2)13;(3).

解析試題分析:(1)題目條件給出了關于的兩組關系,第一問中又給出了一組關系,所以在第一問很容易就能將表達式求出;(2)我們求解無參函數在定區(qū)間上的最大值,只需求導看上的單調性,然后找到極小值就是最小值,最大值通過比較端點值即可判斷出;(3)考查函數單調性的問題,我們可以將其轉化為不等式恒成立問題,轉化之后的不等式是比較常見的二次不等式恒成立,一般碰到這種問題我們采取分離參數的方法將參數分到一邊,求出另一邊的最值即可,另一邊的函數是常見的對勾函數,在這里區(qū)間給的比較好,可以讓我們用基本不等式解出最大值,然后參數大于最大值即可.
試題解析:(1)由,過上點的切線方
程為,即.而過上點的切
線方程為,故 ,∵處有極值,,
,聯立解得.∴.
,令,列下表:










 

 

 

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數
(Ⅰ)設,證明:在區(qū)間內存在唯一的零點;
(Ⅱ)設,若對任意,有,求的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:解答題


(1)若,求最大值;
(2)已知正數,滿足.求證:;
(3)已知,正數滿足.證明:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數;
(1)求證:函數上單調遞增;
(2)設,,若直線軸,求兩點間的最短距離.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

是函數的兩個極值點,其中,
(1)求的取值范圍;
(2)若,求的最大值.注:e是自然對數的底.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

若函數滿足:在定義域內存在實數,使(k為常數),則稱“f(x)關于k可線性分解”.
(Ⅰ)函數是否關于1可線性分解?請說明理由;
(Ⅱ)已知函數關于可線性分解,求的取值范圍;
(Ⅲ)證明不等式:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中.
(1)若,求曲線在點處的切線方程;
(2)求函數的極大值和極小值,若函數有三個零點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數上為增函數,且,,
(1)求的值;
(2)當時,求函數的單調區(qū)間和極值;
(3)若在上至少存在一個,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,.
(I)討論函數的單調性;
(Ⅱ)當時,恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案