已知函數(shù)f(x-1)是定義在R上的奇函數(shù),且在[0,+∞)上是增函數(shù),則函數(shù)f(x)的圖象可能是( 。
A、
B、
C、
D、
考點:函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)函數(shù)的圖象的平移即可得到
解答: 解:∵函數(shù)f(x-1)是定義在R上的奇函數(shù),且在[0,+∞)上是增函數(shù),
∴函數(shù)f(x-1)在(-∞,0)上是增函數(shù),
∵函數(shù)f(x)的圖象,是由函數(shù)f(x-1)的圖象像左平移一個單位得到,
∴選項B符合
故選:B
點評:本題考查了函數(shù)的圖象的識別,關鍵是掌握圖象的平移變化,屬于基礎題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設x>2,則函數(shù)f(x)=x+
2
x-2
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A、B、C是三個集合,則“A=B”是A∩C=B∩C的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

判斷下列函數(shù)的奇偶性
y=x4+x
 

f(x)=5x+3
 

f(x)=x-2+x4
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,P為圓M:(x-3)2+y2=1的動點,Q為拋物線y2=x上的動點,試求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanα=2,則
2cos(
π
2
+α)-cos(π-α)
cosα+3sinα
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanα=2,則
2cos(α-
π
2
)sin(
π
2
-α)+sin(
2
-α)
1+sin(π+α)+sin2(α-π)-sin2(α-
π
2
)
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U=R,集合A={x|1≤x≤3},B={x|x>2},則A∩∁UB等于( 。
A、{x|1<x≤2}
B、{x|1≤x<2}
C、{x|1≤x≤2}
D、{x|1≤x≤3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=alnx+bx(a,b∈R)在x=
1
2
處取得極值,且曲線y=f(x)在點(1,f(1))處的切線與直線x-y+1=0垂直.
(1)求實數(shù)a、b的值;
(2)若對任意x∈[1,+∞),不等式f(x)≤(m-2)x-
m
x
恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案