17.已知函數(shù)$f(x)=cos[{\frac{π}{2}(1-x)}]$,任意的t∈R,記函數(shù)f(x)在區(qū)間[t,t+1]上的最大值為M(t),最小值為m(t),則函數(shù)h(t)=M(t)-m(t)的值域?yàn)?[{1-\frac{{\sqrt{2}}}{2},\sqrt{2}}]$.

分析 利用正弦函數(shù)的周期公式可得其周期T=4,區(qū)間[t,t+1]的長(zhǎng)度為$\frac{1}{4}$T,利用正弦函數(shù)的圖象與性質(zhì),可求得函數(shù)h(t)=M(t)-m(t)的值域.

解答 解:∵$f(x)=cos[{\frac{π}{2}(1-x)}]$=sin$\frac{π}{2}$x,
∴其周期T=4,區(qū)間[t,t+1]的長(zhǎng)度為$\frac{1}{4}$T,
又f(x)在區(qū)間[t,t+1]上的最大值為Mt,最小值為mt,

由正弦函數(shù)的圖象與性質(zhì)可知,當(dāng)x∈[4k+$\frac{1}{2}$,4k+$\frac{3}{2}$]時(shí),h(t)=M(t)-m(t),取得最小值1-$\frac{\sqrt{2}}{2}$;
當(dāng)x∈[4k+$\frac{3}{2}$,4k+$\frac{5}{4}$]時(shí),h(t)=M(t)-m(t)取得最大值$\frac{\sqrt{2}}{2}$-(-$\frac{\sqrt{2}}{2}$)=$\sqrt{2}$;
∴函數(shù)h(t)的值域?yàn)?[{1-\frac{{\sqrt{2}}}{2},\sqrt{2}}]$.
故答案為$[{1-\frac{{\sqrt{2}}}{2},\sqrt{2}}]$.

點(diǎn)評(píng) 本題考查正弦函數(shù)的周期性、單調(diào)性與最值,考查分析問(wèn)題,解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.某校高一開(kāi)設(shè)3門選修課,有3名同學(xué),每人只選一門,恰有1門課程沒(méi)有同學(xué)選修,共有18種不同選課方案(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.某校周四下午第五、六兩節(jié)是選修課時(shí)間,現(xiàn)有甲、乙、丙、丁四位教師可開(kāi)課.已知甲、乙教師各自最多可以開(kāi)設(shè)兩節(jié)課,丙、丁教師各自最多可以開(kāi)設(shè)一節(jié)課.現(xiàn)要求第五、六兩節(jié)課中每節(jié)課恰有兩位教師開(kāi)課(不必考慮教師所開(kāi)課的班級(jí)和內(nèi)容),則不同的開(kāi)課方案共有19種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在等腰直角三角形ABC中,AB=AC=2,點(diǎn)P是邊AB上異于A,B的一點(diǎn),光線從點(diǎn)P出發(fā),經(jīng)BC,CA發(fā)射后又回到原點(diǎn)P(如圖).若光線QR經(jīng)過(guò)△ABC的重心,則AP等于( 。
A.$\frac{1}{2}$B.1C.$\frac{4}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.偶函數(shù)f(x)在x>0時(shí),函數(shù)f′(x)=x2+ax+b,則f(x)的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在等差數(shù)列{an}中,a5=10,則S9=90.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若集合A={1,2,4,5},B={-1,2,4},則集合A∩B={2,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列命題中正確的是( 。
A.若p∨q為真命題,則p∧q為真命題
B.“a>0,b>0”是“$\frac{a}+\frac{a}≥2$”的充分必要條件
C.命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2-3x+2≠0”
D.命題p:?x0>0,使得$x_0^2+{x_0}-1<0$,則¬p:?x>0,使得x2+x-1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知點(diǎn)P為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)右支上的一點(diǎn),點(diǎn)F1,F(xiàn)2分別為雙曲線的左、右焦點(diǎn),雙曲線的一條漸近線的斜率為$\sqrt{3}$,若M為△PF1F2的內(nèi)心,且S${\;}_{△PM{F}_{1}}$=S${\;}_{△PM{F}_{2}}$+λS${\;}_{△M{F}_{1}{F}_{2}}$,則λ的值為$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案