7.已知點P為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)右支上的一點,點F1,F(xiàn)2分別為雙曲線的左、右焦點,雙曲線的一條漸近線的斜率為$\sqrt{3}$,若M為△PF1F2的內(nèi)心,且S${\;}_{△PM{F}_{1}}$=S${\;}_{△PM{F}_{2}}$+λS${\;}_{△M{F}_{1}{F}_{2}}$,則λ的值為$\frac{1}{2}$.

分析 根據(jù)三角形的面積公式以及三角形的面積公式,建立方程關(guān)系,結(jié)合雙曲線的漸近線斜率以及a,b,c的關(guān)系進行求解即可.

解答 解:設(shè)內(nèi)切圓的半徑為R,
∵S${\;}_{△PM{F}_{1}}$=S${\;}_{△PM{F}_{2}}$+λS${\;}_{△M{F}_{1}{F}_{2}}$成立,
∴S${\;}_{△PM{F}_{1}}$-S${\;}_{△PM{F}_{2}}$=λS${\;}_{△M{F}_{1}{F}_{2}}$,
即$\frac{1}{2}$|PF1|•R-$\frac{1}{2}$|PF2|•R=$\frac{1}{2}$•λ|P1P2|•R,
即$\frac{1}{2}$×2a•R=$\frac{1}{2}$•λ•2c•R,
∴a=λc,
∵雙曲線的一條漸近線的斜率為$\sqrt{3}$,
∴$\frac{a}$=$\sqrt{3}$即b=$\sqrt{3}$a=$\sqrt{3}$λc,
∵a2+b2=c2,
∴λ2c2+3λ2c2=c2
即4λ2=1,即λ2=$\frac{1}{4}$,
得λ=$\frac{1}{2}$,
故答案為:$\frac{1}{2}$.

點評 本題主要考查雙曲線性質(zhì)的應(yīng)用,根據(jù)三角形的面積公式,建立方程關(guān)系是解決本題的關(guān)鍵.考查學(xué)生的運算和轉(zhuǎn)化能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)$f(x)=cos[{\frac{π}{2}(1-x)}]$,任意的t∈R,記函數(shù)f(x)在區(qū)間[t,t+1]上的最大值為M(t),最小值為m(t),則函數(shù)h(t)=M(t)-m(t)的值域為$[{1-\frac{{\sqrt{2}}}{2},\sqrt{2}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.橢圓$\frac{x^2}{16}+\frac{y^2}{m}=1$的焦距為$2\sqrt{7}$,則m的值為(  )
A.9B.23C.9或23D.$16-\sqrt{7}或16+\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖:在正方體ABCD-A1B1C1D1中,設(shè)直線A1B與平面A1DCB1所成角為θ1,二面角A1-DC-A的大小為θ2,則θ1,θ2為( 。
A.45o,30oB.30o,45oC.30o,60oD.60o,45o

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.無論λ取何值,直線(λ+2)x-(λ-1)y+6λ+3=0必過定點(-3,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知命題p:?x0∈R,x02+1<0,則( 。
A.¬p:?x∈R,x2+1>0B.¬p:?x∈R,x2+1>0C.¬p:?x∈R,x2+1≥0D.¬p:?x∈R,x2+1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若f(sinθ)=3-cos2θ,則f(cos2θ)等于(  )
A.3-sin2θB.3-cos4θC.3+cos4θD.3+cos2θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)Sn是等差數(shù)列{an}的前n項和,若$\frac{a_7}{a_4}=2$,則$\frac{S13}{S7}$的值為(  )
A.$\frac{13}{14}$B.2C.$\frac{7}{13}$D.$\frac{26}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知直線l:(2m+1)x+(m+1)y=7m+4,圓C:(x-1)2+(y-2)2=25,則直線l與圓C的位置關(guān)系為相交.

查看答案和解析>>

同步練習冊答案