10.兩直線a,b和平面α,其中下列正確的命題是③
①若a∥b,a?α,則b∥α
②若a,b與α所成角相等,則a∥b
③若a⊥α,b⊥α,則a∥b
④若a⊥α,b⊥a,則b∥α

分析 利用線面平行、垂直的判定與性質,即可得出結論.

解答 解:①若a∥b,a?α,b?α,則b∥α,故不正確;
②若a,b與α所成角相等,則a∥b或a,b相交、異面,故不正確;
③若a⊥α,b⊥α,則a∥b,正確‘
④若a⊥α,b⊥a,則b∥α或b?α,故不正確.
故答案為:③.

點評 本題考查線面平行、垂直的判定與性質,考查學生分析解決問題的能力,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.設方程(x-k)2+(y-1)2=-k2+k+2表示圓,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知在遞增等差數(shù)列{an}中,a1=2,a3是a1和a9的等比中項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=$\frac{1}{{({n+1}){a_n}}}$,Sn為數(shù)列{bn}的前n項和,是否存在實數(shù)m,使得Sn<m對于任意的n∈N+恒成立?若存在,請求實數(shù)m的取值范圍,若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知平面α和兩條不重合的直線m,n,有下列四個命題:
(1)若m∥α,n?α,則m∥n
(2)若m∥α,n∥α,則m∥n
(3)若m∥n,n?α,則m∥α
(4)若m∥n,m∥α,則n∥α或n?α
上述四個命題正確的是(4)(寫序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.如圖,四棱錐P-ABCD中,∠BAD=∠ABC=90°,BC=2AD,△PAB和△PAD都是等邊三角形,則異面直線CD與PB所成角的大小為90°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知a<-1<b<0<c<1,則下列不等式成立的是(  )
A.b2<c<a2B.ab+$\frac{1}{ab}$<cC.$\frac{1}$<$\frac{1}{a}$<$\frac{1}{c}$D.b2>ab-bc+ac

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖所示,正三棱柱ABC-A1B1C1的底面邊長是2,側棱長是$\sqrt{3}$,D是AC的中點.
(Ⅰ)求證:B1C∥平面A1BD;
(Ⅱ)在線段AA1上是否存在一點E,使得平面B1C1E⊥平面A1BD?若存在,求出AE的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知等差數(shù)列的{an}前n項和為Sn,且S3-2a2=3,S4=16;數(shù)列{bn}滿足b1+2b2+3b3+…+nbn=(n-1)2n+1.
(1)求數(shù)列{an},{bn}的通項公式;
(2)記cn=an+(-1)nlog2bn,數(shù)列{cn}的前n項和為Tn(n∈N*),當n為奇數(shù)時,求Tn的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知:如圖,平面α、β滿足α∥β,A、C∈α,B、D∈β,E∈AB,F(xiàn)∈CD,AC與BD異面,且$\frac{AE}{EB}=\frac{CF}{FD}$.求證:EF∥β

查看答案和解析>>

同步練習冊答案