18.已知AB是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長(zhǎng)軸,若把該長(zhǎng)軸2010等分,過(guò)每個(gè)等分點(diǎn)作AB的垂線,依次交橢圓的上半部分于點(diǎn)P1,P2,…,P2009,設(shè)左焦點(diǎn)為F1,則$\frac{1}{2010}$(|F1A|+|F1P1|+|F1P2|+…+|F1P2009|+|F1B|)=$\frac{2011}{2010}a$.

分析 設(shè)右焦點(diǎn)為F2,由橢圓的定義可得|F1Pi|+|F2Pi|=2a,(1≤i≤2009,i∈N),點(diǎn)P1,P2,…,Pn-1 關(guān)于y軸成對(duì)稱分布,|F1Pi|+|F1P2010-i|=2a,|F1P1005|=a,|F1A|+|F1B|=2a,即可求得|F1A|+|F1P1|+|F1P2|+…+|F1P2009|+|F1B|的值,求得$\frac{1}{2010}$(|F1A|+|F1P1|+|F1P2|+…+|F1P2009|+|F1B|)=$\frac{2011}{2010}a$.

解答 解:設(shè)右焦點(diǎn)為F2,由橢圓的定義可得|F1Pi|+|F2Pi|=2a,(1≤i≤2009,i∈N),
由題意知點(diǎn)P1,P2,…,Pn-1 關(guān)于y軸成對(duì)稱分布,
∴|F1Pi|+|F1P2010-i|=2a,|F1P1005|=a,|F1A|+|F1B|=2a,
|F1A|+|F1P1|+|F1P2|+…+|F1P2009|+|F1B|=2a×1004+2a+a=2011a,
$\frac{1}{2010}$(|F1A|+|F1P1|+|F1P2|+…+|F1P2009|+|F1B|)=$\frac{2011}{2010}a$,
故答案為:$\frac{2011}{2010}a$.

點(diǎn)評(píng) 本題考查橢圓的定義,考查橢圓的簡(jiǎn)單幾何性質(zhì),考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若一個(gè)正三棱錐的正(主)視圖如圖所示,則其體積等于( 。
A.$\frac{{\sqrt{3}}}{6}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{2\sqrt{3}}}{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)函數(shù)f(x)=$\frac{x}{x+2}$(x>0),觀察:
f1(x)=f(x)=$\frac{x}{x+2}$(x>0),f2(x)=f(f1(x))=$\frac{x}{3x+4}$,f3(x)=f(f2(x))=$\frac{x}{7x+8}$,f4(x)=f(f3(x))=$\frac{x}{15x+16}$…
根據(jù)以上事實(shí),由歸納推理可得:當(dāng)n∈N+時(shí),fn(1)=$\frac{1}{{{2^{n+1}}-1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在對(duì)人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人,女性中有43人主要的休閑方式是看電視,其余人主要的休閑方式是運(yùn)動(dòng);男性中有21人主要的休閑方式是看電視,其余人主要的休閑方式是運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;
看電視運(yùn)動(dòng)合計(jì)
男性21
女性4370
合計(jì)124
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為休閑方式與性別有關(guān)系.
參考臨界值表
P(k2>k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.845.0246.6357.87910.83

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=|x-2|+2|x+1|.
(1)解不等式f(x)>4;
(2)若關(guān)于x的不等式f(x)≥m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=$\frac{1}{3}{x^3}$+ax2+(a+2)x-3有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(-1,2)B.(-∞,-1)∪(2,+∞)C.[-1,2]D.(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{lnx}{1-x}$,ϕ(x)=(x-1)2•f′(x)
(1)若函數(shù)ϕ(x)在區(qū)間(3m,m+$\frac{1}{2}$)上單調(diào)遞減,求實(shí)數(shù)m的取值范圍;
(2)若對(duì)任意的x∈(0,1),恒有(1+x)•f(x)+2a<0(a>0),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=3+2cosα\\ y=2sinα\end{array}\right.$(α為參數(shù)).以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.直線l的極坐標(biāo)方程為ρcosθ+ρsinθ+1=0.
(1)寫出圓C的普通方程;
(2)將直線l的極坐標(biāo)方程化為直角坐標(biāo)方程;
(3)過(guò)直線l的任意一點(diǎn)P作直線與圓C交于A,B兩點(diǎn),求|PA|•|PB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在三棱錐的六條棱中任意選擇兩條,則這兩條棱有公共點(diǎn)的概率為$\frac{4}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案