2.已知圓C方程為x2+y2=2,過點P(-1,1)與圓C相切的直線方程為( 。
A.x-y+2=0B.x+y-1=0C.x-y+1=0D.x+y+2=0

分析 由條件根據(jù)過圓x2+y2=r2上的一點(x0,y0)的圓的切線方程為 x0x+y0 y=r2,可得結(jié)論.

解答 解:根據(jù)點P(-1,1)在圓x2+y2=2上,故過點P(-1,1)與圓x2+y2=2相切的直線的方程為-x+y=2,
即x-y+2=0,
故選A.

點評 本題主要考查求圓的切線方程,利用了過圓x2+y2=r2上的一點(x0,y0)的圓的切線方程為 x0x+y0 y=r2,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=cos2x-$\sqrt{3}$sinxcosx-$\frac{1}{2}$可以化為f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈(0,π)).
(1)求出A,ω,φ的值并求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若等腰△ABC中,A=φ,a=2,求角B,邊c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.對于實數(shù)a和b,定義運算“?”:a?b=$\left\{\begin{array}{l}{a,a-b≤1}\\{b,a-b>1}\end{array}\right.$,設(shè)函數(shù)f(x)=(x+2)?(3-x),x∈R,若方程f(x)=c恰有兩個不同的解,則實數(shù)c的取值范圍是(-∞,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.過橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦點F1作一條傾角為45°的直線交橢圓于A、B兩點,若滿足$\overrightarrow{A{F_1}}$=$\frac{1}{2}$$\overrightarrow{{F_1}B}$.
(1)求橢圓C的離心率;
(2)若橢圓C的左焦點F2到直線AB的距離為2,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若數(shù)列{an}中,an=46-3n,則當(dāng)Sn取最大值時,n=( 。
A.14B.15C.15或16D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.全集U=R,A⊆U,B⊆R,集合A={x∈N|1≤x≤10},集合B={x|x2+x-6=0},則圖中陰影部分表示的集合為( 。
A.{2}B.{-3}C.{-3,2}D.{-2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.對任意的a∈[-1,1],f(x)=x2+(a-4)x+4-2a的值恒大于0,則x的取值范圍是( 。
A.(-∞,1)∪(3,+∞)B.(1,3)C.(-∞,1)∪(2,+∞)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}中,a1=3,an+1=2an-1.
(1)假設(shè)bn=an-1,求{bn}的通項公式和前n項和Sn;
(2)設(shè)${c_n}=\frac{{{2^{n+1}}}}{{{a_n}{a_{n+1}}}}$,求{cn}的前n項和Tn的取值范圍..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列四個關(guān)系式中,正確的是(  )
A.∅∈{a}B.a∉{a,b}C.b⊆{a,b}D.{a}⊆{a,b}

查看答案和解析>>

同步練習(xí)冊答案