分析 (1)取AD的中點E,連結(jié)PE,EM,AC.則AC∥EM,由菱形性質(zhì)得BD⊥EM,又BD⊥PM,故而BD⊥平面PEM,于是BD⊥PE,又PE⊥AD,故而PE⊥平面ABCD,從而得出結(jié)論;
(2)以E為原點建立空間直角坐標系,求出平面PBM的法向量和$\overrightarrow{AB}$的坐標,計算出|cos<$\overrightarrow{n}$,$\overrightarrow{AB}$>|即為答案.
解答 解:(1)證明:取AD的中點E,連接PE,EM,AC.
∵PA=PD,
∴PE⊥AD.
∵底面ABCD為菱形,
∴BD⊥AC,
又EM∥AC,
∴EM⊥BD.
又BD⊥PM,
∴BD⊥平面PEM,
則BD⊥PE.
∴PE⊥平面ABCD.
又PE?平面PAD,
∴平面PAD⊥平面ABCD;
(2)解:設(shè)PA=PD=2a,由∠APD=60°可得AD=2a,$PE=\sqrt{3}a$.
可建立如圖空間直角坐標系E-xyz,
則$A(a,0,0),P(0,0,\sqrt{3}a),M({-\frac{3}{2}a,\frac{{\sqrt{3}}}{2}a,0}),B(0,\sqrt{3}a,0)$.∴$\overrightarrow{AB}=(-a,\sqrt{3}a,0)$,$\overrightarrow{PM}=({-\frac{3}{2}a,\frac{{\sqrt{3}}}{2}a,-\sqrt{3}a})$,$\overrightarrow{PB}=(0,\sqrt{3}a,-\sqrt{3}a)$.
設(shè)n=(x,y,z)為平面PBM的法向量,
則$\left\{{\begin{array}{l}{n•\overrightarrow{PB}=0}\\{n•\overrightarrow{PM}=0}\end{array}}\right.$即$\left\{{\begin{array}{l}{-\frac{3}{2}ax+\frac{{\sqrt{3}}}{2}ay-\sqrt{3}az=0}\\{\sqrt{3}ay-\sqrt{3}az=0}\end{array}}\right.$$\left\{{\begin{array}{l}{x=-\frac{{\sqrt{3}}}{3}z}\\{y=z}\end{array}}\right.$
取$z=\sqrt{3}$,可得$n=(-1,\sqrt{3},\sqrt{3})$為平面PBM的一個法向量.
又$cos\left?{n,\overrightarrow{AB}}\right>$=$\frac{a+3a}{{2\sqrt{7}a}}=\frac{{2\sqrt{7}}}{7}$.
則AB與平面PBM所成角的正弦值為$\frac{{2\sqrt{7}}}{7}$.
點評 本題考查了面面垂直的判定,線面角的計算,空間向量在立體幾何中的應(yīng)用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 3+2$\sqrt{2}$ | C. | 3+$\sqrt{2}$ | D. | 2+2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | 3 | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com