10.△ABC中,sinA:sinB:sinC=$\sqrt{2}$:1:2,則cosA=$\frac{3}{4}$.

分析 由已知利用正弦定理,轉(zhuǎn)化角為邊的關(guān)系,進(jìn)而利用余弦定理即可求出結(jié)果.

解答 解:∵sinA:sinB:sinC=$\sqrt{2}$:1:2,
∴由正弦定理可得:a:b:c=$\sqrt{2}$:1:2,
∴令b=t,則a=$\sqrt{2}$t,c=2t,
∴由余弦定理可得:cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{{t}^{2}+4{t}^{2}-2{t}^{2}}{4{t}^{2}}$=$\frac{3}{4}$.
故答案為:$\frac{3}{4}$.

點(diǎn)評(píng) 本題考查了正弦定理、余弦定理在解三角形中的應(yīng)用,考查了三角形的解法,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是等比數(shù)列,公比為q,數(shù)列{cn}中,cn=anbn,Sn是數(shù)列{cn}的前n項(xiàng)和,若Sm=7,S2m=-201(m為正偶數(shù)),則S4m的值為( 。
A.-1601B.-1801C.-2001D.-2201

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知?jiǎng)狱c(diǎn)M到點(diǎn)A(2,0)的距離是它到點(diǎn)B(8,0)的距離的一半.
(1)動(dòng)點(diǎn)M的軌跡方程;
(2)求與點(diǎn)M的軌跡相切,且在x軸、y軸上的截距相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,其中向量$\overrightarrow{a}$=(2cos x,1),$\overrightarrow$=(cos x,$\sqrt{3}$sin 2x),x∈R.
(1)若函數(shù)f(x)=1-$\sqrt{3}$,且x∈[-$\frac{π}{3}$,$\frac{π}{3}$],求x;
(2)求函數(shù)y=f(x)的單調(diào)增區(qū)間,并在給出的坐標(biāo)系中畫(huà)出y=f(x)在[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖所示,在四棱錐P-ABCD中,底面ABCD為菱形,且∠DAB=60°,PA=PD,M為CD的中點(diǎn),BD⊥PM.
(1)求證:平面PAD⊥平面ABCD;
(2)若∠PAD=60°,求直線AB與平面PBM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在△ABC中,2sinA+$\sqrt{3}$cosB=3,2cosA+$\sqrt{3}$sinB=2,則角C=( 。
A.$\frac{π}{2}$B.$\frac{2π}{3}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{π}{6}$或$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.(1)已知tanθ=-$\frac{3}{4}$,求2+sinθcosθ-cos2θ的值.
(2)設(shè)f(θ)=$\frac{{2{{cos}^3}θ+{{sin}^2}(2π-θ)+cos(-θ)-3}}{{2+2{{cos}^2}(π+θ)+cos(2π-θ)}}$,求f($\frac{π}{3}$).
(3)函數(shù)y=cos2x-3cosx+2的最小值是多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在△ABC中,a,b,c分別是角A,B,C所對(duì)的邊,已知a+b=10,cosC是方程所2x2-3x-2=0的一個(gè)根,求△ABC周長(zhǎng)的最小( 。
A.10+5$\sqrt{3}$B.15C.10+2$\sqrt{3}$D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}滿足an+1=2an-n+1,n∈N*,a1=3,
(1)求a2-2,a3-3,a4-4的值;
(2)根據(jù)(1)的結(jié)果試猜測(cè){an-n}是否為等比數(shù)列,證明你的結(jié)論,并求出{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案