【題目】設(shè)對(duì)于任意實(shí)數(shù)x,不等式|x+6|+|x﹣1|≥m恒成立. (I) 求m 的取值范圍;
(Ⅱ)當(dāng)m取最大值時(shí),解關(guān)于x的不等式:|x﹣4|﹣3x≤2m﹣9.
【答案】解:(I)∵|x+6|+|x﹣1|≥|x+6﹣x+1|=7, 又對(duì)于任意實(shí)數(shù)x,不等式|x+6|+|x﹣1|≥m恒成立,
∴m≤7,
∴m 的取值范圍是(﹣∞,7].
(Ⅱ)當(dāng)m取最大值時(shí),m=7,
原不等式等價(jià)于:|x﹣4|﹣3x≤5,
∴ 或 ,
解得x≥4或﹣ ≤x<4,
∴原不等式的解集為{x|x≥﹣ }
【解析】(1)由|x+6|+|x﹣1|≥|x+6﹣x+1|=7,能求出m 的取值范圍.(2)當(dāng)m取最大值時(shí),m=7,原不等式等價(jià)于:|x﹣4|﹣3x≤5,由此能求出原不等式的解集.
【考點(diǎn)精析】關(guān)于本題考查的絕對(duì)值不等式的解法,需要了解含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào)才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,已知C= ,向量 =(sinA,1), =(1,cosB),且 .
(1)求A的值;
(2)若點(diǎn)D在邊BC上,且3 = , = ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的左右頂點(diǎn)為,右焦點(diǎn)為,一條準(zhǔn)線(xiàn)方程是,點(diǎn)為橢圓上異于的兩點(diǎn),點(diǎn)為的中點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線(xiàn)交直線(xiàn)于點(diǎn),記直線(xiàn)的斜率為,直線(xiàn)的斜率為,求證:為定值;
(3)若,求直線(xiàn)斜率的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》有如下問(wèn)題:“今有人持金出五關(guān),前關(guān)二而稅一,次關(guān)三而稅一,次關(guān)四而稅一,次關(guān)五而稅一,次關(guān)六而稅一,并五關(guān)所稅,適重一斤,問(wèn)本持金幾何”其意思為“今有人持金出五關(guān),第1關(guān)收稅金 ,第2關(guān)收稅金為剩余金的 ,第3關(guān)收稅金為剩余金的 ,第4關(guān)收稅金為剩余金的 ,第5關(guān)收稅金為剩余金的 ,5關(guān)所收稅金之和,恰好重1斤,問(wèn)原來(lái)持金多少?”若將題中“5關(guān)所收稅金之和,恰好重1斤,問(wèn)原來(lái)持金多少?”改成假設(shè)這個(gè)原來(lái)持金為x,按此規(guī)律通過(guò)第8關(guān),則第8關(guān)需收稅金為x.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點(diǎn),直線(xiàn)AF的斜率為,O為坐標(biāo)原點(diǎn).
(1)求E的方程;
(2)設(shè)過(guò)點(diǎn)A的動(dòng)直線(xiàn)l與E相交于P,Q兩點(diǎn).當(dāng)△OPQ的面積最大時(shí),求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的四個(gè)頂點(diǎn)圍成的四邊形的面積為,原點(diǎn)到直線(xiàn)的距離為.
(1)求橢圓的方程;
(2)已知定點(diǎn),是否存在過(guò)的直線(xiàn),使與橢圓交于,兩點(diǎn),且以為直徑的圓過(guò)橢圓的左頂點(diǎn)?若存在,求出的方程:若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在幾何體A1B1D1﹣ABCD中,四邊形A1B1BA與A1D1DA均為直角梯形,且AA1⊥底面ABCD,四邊形ABCD為正方形,AB=2A1D1=2A1B1=4,AA1=4,P為DD1的中點(diǎn).
(Ⅰ)求證:AB1⊥PC;
(Ⅱ)求幾何體A1B1D1﹣ABCD的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)= ,若曲線(xiàn)f(x)在點(diǎn)(e,f(e))處的切線(xiàn)與直線(xiàn)e2x﹣y+e=0垂直(其中e為自然對(duì)數(shù)的底數(shù)).
(1)若f(x)在(m,m+1)上存在極值,求實(shí)數(shù)m的取值范圍;
(2)求證:當(dāng)x>1時(shí), > .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題關(guān)于的不等式的解集是,命題函數(shù)的定義域?yàn)?/span>.
(1)如果為真命題,求實(shí)數(shù)的取值范圍;
(2)如果為真命題, 為假命題, 求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com