【題目】定義集合與集合之差是由所有屬于且不屬于的元素組成的集合,記作 且.已知集合.
(Ⅰ)若集合,寫出集合的所有元素;
(Ⅱ)從集合選出10個元素由小到大構成等差數列,其中公差的最大值和最小值分別是多少?公差為和的等差數列各有多少個?
(Ⅲ)設集合,且集合中含有10個元素,證明:集合中必有10個元素組成等差數列.
【答案】(Ⅰ)2,4,8,16,32,64;(Ⅱ)只有1個,d=1有91個;(Ⅲ)見解析
【解析】
(Ⅰ)根據題意,分析集合T的元素,結合M﹣N的含義分析可得答案;(Ⅱ)根據題意,由等差數列的性質分析公差的最大、最小值,據此分析等差數列的數目,相加即可得答案;(Ⅲ)根據題意,將集合S中元素列表,據此分析集合集合S﹣A中的元素,由反證法分析可得結論.
(Ⅰ)根據題意,集合 , ;
則;
則集合 的所有元素是: 2,4,8,16,32,64;
(Ⅱ)當首項是1,末項是100時,公差最大為11,即 .
這樣的數列只有1個:1,12,23,34,45,56,67,78,89,100;
當選取的10個數是連續(xù)自然數時,公差最小為1,即d=1.
這樣的數列首項可以是1,2,3,…,91中的任何一個,
因此共有91個公差為1的等差數列;
(Ⅲ)將集合中元素列表如下:
1 | 2 | 3 | … | 10 |
11 | 12 | 13 | … | 20 |
21 | 22 | 23 | … | 30 |
┆ | ┆ | ┆ | ┆ | ┆ |
91 | 92 | 93 | … | 100 |
表中各行或各列的十個數分別構成等差數列.
假設存在含有10個元素的集合,使得 中不含10個元素組成的等差數列.
顯然每連續(xù)10個元素中必有集合中的唯一一個元素,即表的每行、每列中必有集合中的唯一一個元素.
記表中第行第列的數為.
若第 行中集合A的唯一元素為 ,則第行中, ,… 中必有集合A中元素.
若第行的第一個數在集合中,則此行余下九個數和下一行第一個數可以組成等差數列,與假設矛盾.
因此,第一列中集合的唯一元素只可能在第十行.
同理,若第行的第二個數在集合中,則此行余下八個數和下一行前兩個數可以組成等差數列,與假設矛盾.
因此,第二列中集合的唯一元素只可能在第九行.
依此類推,得 .
此時,另一條對角線上的十個元素構成等差數列,與假設矛盾.
綜上,原命題成立.
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,右焦點為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)如圖,過定點的直線交橢圓于兩點,連接并延長交于,求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】用0,1,2,3,4,5這六個數字組成無重復數字的四位數.
(1)在組成的四位數中,求所有偶數的個數;
(2)在組成的四位數中,求比2430大的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 : ( )的離心率 ,直線 被以橢圓 的短軸為直徑的圓截得的弦長為 .
(1)求橢圓 的方程;
(2)過點 的直線 交橢圓于 , 兩個不同的點,且 ,求 的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將一枚質地均勻的硬幣向上拋擲三次,下列兩個事件中,是對立事件的是( )
A.事件:“恰有兩次正面向上”,事件:“恰有兩次反面向上”
B.事件:“恰有兩次正面向上”,事件:“恰有一次正面向上”
C.事件:“至少有一次正面向上”,事件:“至多一次正面向上”
D.事件:“至少有一次正面向上”,事件:“恰有三次反面向上”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓C:(a>b>0)的左、右焦點分別為,離心率為,過焦點且垂直于x軸的直線被橢圓C截得的線段長為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點M(0,-1),直線l經過點N(2,1)且與橢圓C相交于A,B兩點(異于點M),記直線MA的斜率為,直線MB的斜率為,證明 為定值,并求出該定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線過點,其參數方程為(為參數, ),以為極點, 軸非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)求已知曲線和曲線交于兩點,且,求實數的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,矩形中,,是邊上異于端點的動點,,將矩形沿折疊至處,使面(如圖2).點滿足,.
(1)證明:;
(2)設,當為何值時,四面體的體積最大,并求出最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com