18.現(xiàn)將5張連號的電影票分給甲、乙等5個人,每人一張,且甲、乙分得的電影票連號,則共有不同分法的種數(shù)為( 。
A.12B.24C.36D.48

分析 根據(jù)題意,分3步進行分析:①、將電影票分成4組,其中1組是2張連在一起,②、將連在一起的2張票分給甲乙,③、將剩余的3張票全排列,分給其他三人,求出每一步的情況數(shù)目,由分步計數(shù)原理計算可得答案.

解答 解:根據(jù)題意,分3步進行分析:
①、將電影票分成4組,其中1組是2張連在一起,有4種分組方法,
②、將連在一起的2張票分給甲乙,考慮其順序有A22=2種情況,
③、將剩余的3張票全排列,分給其他三人,有A33=6種分法,
則共有4×2×6=48種不同分法,
故選:D.

點評 本題考查排列、組合的實際應用,注意先滿足“甲、乙分得的電影票連號”的條件.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與直線l:x-y+2=0平行,則雙曲線C的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{2}$C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.(1-$\sqrt{x}$)6(1-$\root{3}{x}$)4的展開式中,x2的系數(shù)是(  )
A.-75B.-45C.45D.75

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.名著《算學啟蒙》中有如下題:“松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等”.這段話的意思是:“松有五尺長,竹有兩尺長,松每天增長前一天長度的一半,竹每天增長前一天長度的兩倍.”.為了研究這個問題,以a代表松長,以b代表竹長,設計了如圖所示的程序框圖,輸入的a,b的值分別為5,2,則輸出的n的值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,在平面直角坐標系xOy中,已知橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左、右頂點分別為A,B,過右焦點F的直線l與橢圓C交于P,Q兩點(點P在x軸上方).
(1)若QF=2FP,求直線l的方程;
(2)設直線AP,BQ的斜率分別為k1,k2,是否存在常數(shù)λ,使得k1=λk2?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.將函數(shù)f(x)=cos2x圖象上所有點向右平移$\frac{π}{4}$個單位長度后得到函數(shù)g(x)的圖象,若g(x)在區(qū)間[0,a]上單調(diào)遞增,則實數(shù)a的最大值為(  )
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3}{4}π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.在極坐標系中,直線ρcosθ+$\sqrt{3}$ρsinθ+1=0與圓ρ=2acosθ(a>0)相切,則a=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在等差數(shù)列{an}中,a1=-2,a12=20.
(Ⅰ)求通項an
(Ⅱ)若${b_n}=\frac{{{a_1}+{a_2}+…{a_n}}}{n}$,求數(shù)列$\left\{{{3^{b_n}}}\right\}$的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.從甲、乙等8名志愿者中選5人參加周一到周五的社區(qū)服務,每天安排一人,每人只參加一天,若要求甲、乙兩人至少選一人參加,且當甲、乙兩人都參加時,他們參加社區(qū)服務的日期不相鄰,那么不同的安排種數(shù)為5040.(用數(shù)字作答)

查看答案和解析>>

同步練習冊答案