7.在等差數(shù)列{an}中,a1=-2,a12=20.
(Ⅰ)求通項an;
(Ⅱ)若${b_n}=\frac{{{a_1}+{a_2}+…{a_n}}}{n}$,求數(shù)列$\left\{{{3^{b_n}}}\right\}$的前n項和.

分析 (Ⅰ)根據(jù)等差數(shù)列的通項公式即可求出公差d,寫出通項公式即可,
(Ⅱ)先根據(jù)等差數(shù)列的求和公式化簡bn,再判斷數(shù)列$\left\{{{3^{b_n}}}\right\}$為等比數(shù)列,根據(jù)等比數(shù)列的求和公式計算即可.

解答 解:(Ⅰ)因為 an=-2+(n-1)d,
所以 a12=-2+11d=20.
于是 d=2,
所以 an=2n-4.
(Ⅱ)因為an=2n-4,
所以 ${a_1}+{a_2}+…+{a_n}=\frac{n(2n-6)}{2}=n(n-3)$.
于是 ${b_n}=\frac{{{a_1}+{a_2}+…{a_n}}}{n}=n-3$,
令 ${c_n}={3^{b_n}}$,則 ${c_n}={3^{n-3}}$.
顯然數(shù)列{cn}是等比數(shù)列,且${c_1}={3^{-2}}$,公比q=3,
所以數(shù)列$\left\{{{3^{b_n}}}\right\}$的前n項和${S_n}=\frac{{{c_1}(1-{q^n})}}{1-q}=\frac{{{3^n}-1}}{18}$.

點評 本題考查了等差數(shù)列和等比數(shù)列的定義和求和公式,考查了學(xué)生的運算能力,屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx-a(a∈R)與函數(shù)$F(x)=x+\frac{2}{x}$有公共切線.
(Ⅰ)求a的取值范圍;
(Ⅱ)若不等式xf(x)+e>2-a對于x>0的一切值恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.現(xiàn)將5張連號的電影票分給甲、乙等5個人,每人一張,且甲、乙分得的電影票連號,則共有不同分法的種數(shù)為( 。
A.12B.24C.36D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=(x2+ax-a)•e-x(a∈R).
(Ⅰ)當(dāng)a=0時,求曲線y=f(x)在點(-1,f(-1))處的切線方程;
(Ⅱ)設(shè)g(x)=x2-x-1,若對任意的t∈[0,2],存在s∈[0,2]使得f(s)≥g(t)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知直線x+y=m(m>0)與圓x2+y2=1相交于P,Q兩點,且∠POQ=120°(其中O為原點),那么m的值是(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓E:mx2+y2=1(m>0).
(Ⅰ)若橢圓E的右焦點坐標(biāo)為$(\sqrt{3},0)$,求m的值;
(Ⅱ)由橢圓E上不同三點構(gòu)成的三角形稱為橢圓的內(nèi)接三角形.若以B(0,1)為直角頂點的橢圓E的內(nèi)接等腰直角三角形恰有三個,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.甘肅省瓜州縣自古就以生產(chǎn)“美瓜”面名揚中外,生產(chǎn)的“瓜州蜜瓜”有4個系列30多個品種,質(zhì)脆汁多,香甜可口,清爽宜人,含糖量達14%~19%,是消暑止渴的佳品,調(diào)查表明,蜜瓜的甜度與海拔高度,日照時長,溫差有極強的相關(guān)性,分別用x,y,z表示蜜瓜甜度與海拔高度,日照時長,溫差的相關(guān)程度,big對它們進行量化:0表示一般,1表示良,2表示優(yōu),在用綜合指標(biāo)w=x+y+z的值平定蜜瓜的頂級,若w≥4,則為一級;若2≤w≤3,則為二級;若0≤w≤1,則為三級,今年來,周邊各省也開始發(fā)展蜜瓜種植,為了了解目前蜜瓜在周邊各省的種植情況,研究人員從不同省份隨機抽取了10塊蜜瓜種植地,得到如下結(jié)果:
種植地編號ABCDE
(x,y,z)(1,0,0)(2,2,1)(0,1,1)(2,0,2)(1,1,1)
種植地編號FGHIJ
(x,y,z)(1,1,2)(2,2,2)(0,0,1)(2,2,1)(0,2,1)
(1)若有蜜瓜種植地110塊,試估計等級為三家的蜜瓜種植地的數(shù)量;
(2)從樣本里等級為一級的蜜瓜種植地中隨機抽取兩塊,求這兩塊種植地的綜合指標(biāo)w至少有一個為4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥2}\\{x-2y+4≥0}\\{2x-y-4≤0}\end{array}\right.$,若x2+y2+2x≥k恒成立,則實數(shù)k的最大值為( 。
A.40B.9C.8D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知x,y∈R,( 。
A.若|x-y2|+|x2+y|≤1,則${(x+\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{3}{2}$
B.若|x-y2|+|x2-y|≤1,則${(x-\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{3}{2}$
C.若|x+y2|+|x2-y|≤1,則${(x+\frac{1}{2})^2}+{(y+\frac{1}{2})^2}≤\frac{3}{2}$
D.若|x+y2|+|x2+y|≤1,則${(x-\frac{1}{2})^2}+{(y+\frac{1}{2})^2}≤\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊答案