15.若數(shù)列{an}的前n項(xiàng)和為Sn=2n+1-2,則數(shù)列a10=1024.

分析 n≥2時,an=Sn-Sn-1,即可得出.

解答 解:n≥2時,an=Sn-Sn-1=2n+1-2-(2n-2)=2n
∴a10=210=1024.
故答案為:1024.

點(diǎn)評 本題考查了數(shù)列遞推關(guān)系、通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某地方政府欲將一塊如圖所示的直角梯形ABCD空地改建為健身娛樂廣場,已知AD∥BC,AD⊥AB,AD=2BC=2$\sqrt{3}$百米,AB=3百米,廣場入口P在AB上,且AP=2BP,根據(jù)規(guī)劃,過點(diǎn)P鋪設(shè)兩條互相垂直的筆直小路PM、PN(小路寬度不計(jì)),點(diǎn)M、N分別在邊AD、BC上(包含端點(diǎn)),△PAM區(qū)域擬建為跳舞健身廣場,△PBN區(qū)域擬建為兒童樂園,其他區(qū)域鋪設(shè)綠化草坪,設(shè)∠APM=θ.
(1)求綠化草坪面積的最大值;
(2)現(xiàn)擬將兩條小路PN、PN進(jìn)行不同風(fēng)格的美化,小路PM的美化費(fèi)用為每百米1萬元,小路PN的美化費(fèi)用為每百米2萬元,試確定點(diǎn)M,N的位置,使得小路PM,PN的總美化費(fèi)用最低,并求出最低費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知△ABC中,∠BAC=60°,AB=4,AC=3,若E在線段BC上,且BE=2EC,求∠EAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.以直角坐標(biāo)系xOy的坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t+4\sqrt{2}}\end{array}\right.$(t為參數(shù)),圓C的極坐標(biāo)方程為ρ=2cos(θ+$\frac{π}{4}$).
(1)求圓C的直角坐標(biāo);
(2)試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在正四面體ABCD中,M,N分別是BC和DA的中點(diǎn),則異面直線MN和CD所成角為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f(x)=cosx,$則f'(\frac{π}{2})$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+2cosθ}\\{y=\sqrt{3}+2sinθ}\end{array}\right.$(θ為參數(shù)),若P是圓C與x軸的交點(diǎn),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)過點(diǎn)P的圓C的切線為l
(Ⅰ)求直線l的極坐標(biāo)方程
(Ⅱ)求圓C上到直線ρ(cosθ+$\sqrt{3}$sinθ)+6=0的距離最大的點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,a,b,c分別是角A,B,C的對邊,且a=3,c=1,$B=\frac{π}{3}$,則b的值為$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)$f(x)=sin(ωx+ϕ)+cos(ωx+ϕ)(ω>0,|ϕ|<\frac{π}{2})$的最小正周期為π,且$f(x+\frac{π}{6})$是偶函數(shù),則( 。
A.f(x)在$(-\frac{π}{4},\frac{π}{6})$單調(diào)遞增B.f(x)在$(\frac{π}{4},\frac{3}{4}π)$單調(diào)遞增
C.f(x)在$(-\frac{π}{4},\frac{π}{6})$單調(diào)遞減D.f(x)在$(\frac{π}{4},\frac{3}{4}π)$單調(diào)遞減

查看答案和解析>>

同步練習(xí)冊答案