X的數(shù)學(xué)期望.附:若隨機(jī)變量Z服從正態(tài)分布N.則P≈0.9974.0.997419≈0.95.">
【題目】為了保障某治療新冠肺炎藥品的主要藥理成分在國家藥品監(jiān)督管理局規(guī)定的值范圍內(nèi),武漢某制藥廠在該藥品的生產(chǎn)過程中,檢驗(yàn)員在一天中按照規(guī)定從該藥品生產(chǎn)線上隨機(jī)抽取20件產(chǎn)品進(jìn)行檢測,測量其主要藥理成分含量(單位:mg).根據(jù)生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條藥品生產(chǎn)線正常狀態(tài)下生產(chǎn)的產(chǎn)品的主要藥理成分含量服從正態(tài)分布N(μ,σ2).在一天內(nèi)抽取的20件產(chǎn)品中,如果有一件出現(xiàn)了主要藥理成分含量在(μ﹣3σ,μ+3σ)之外的藥品,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對本次的生產(chǎn)過程進(jìn)行檢查.
(1)下面是檢驗(yàn)員在2月24日抽取的20件藥品的主要藥理成分含量:
10.02 | 9.78 | 10.04 | 9.92 | 10.14 | 10.04 | 9.22 | 10.13 | 9.91 | 9.95 |
10.09 | 9.96 | 9.88 | 10.01 | 9.98 | 9.95 | 10.05 | 10.05 | 9.96 | 10.12 |
經(jīng)計(jì)算得xi=9.96,s0.19;其中xi為抽取的第i件藥品的主要藥理成分含量,i=1,2,…,20.用樣本平均數(shù)作為μ的估計(jì)值,用樣本標(biāo)準(zhǔn)差s作為σ的估計(jì)值,利用估計(jì)值判斷是否需對本次的生產(chǎn)過程進(jìn)行檢查?
(2)假設(shè)生產(chǎn)狀態(tài)正常,記X表示某天抽取的20件產(chǎn)品中其主要藥理成分含量在(μ﹣3σ,μ+3σ)之外的藥品件數(shù),求P(X=1)及/span>X的數(shù)學(xué)期望.
附:若隨機(jī)變量Z服從正態(tài)分布N(μ,σ2),則P(μ﹣3σ<Z<μ+3σ)≈0.9974,0.997419≈0.95.
【答案】(1)需對本次的生產(chǎn)過程進(jìn)行檢查(2)P(X=1)≈0.0494;E(X)≈0.052
【解析】
(1)根據(jù)題目所給數(shù)據(jù)得到,由此求得,有一件藥品在這個(gè)區(qū)間外,由此判斷需對本次的生產(chǎn)過程進(jìn)行檢查.
(2)利用二項(xiàng)分布概率計(jì)算公式,計(jì)算出,以及求得的數(shù)學(xué)期望.
(1)由9.96,s=0.19.
可得:9.96,0.19,
由樣品數(shù)據(jù)看出有一樣藥品的主要藥理成分9.22含量在=(9.39,10.53)之外的藥品,因此需對本次的生產(chǎn)過程進(jìn)行檢查.
(2)抽取的一件藥品中其主要藥理成分含量在(μ﹣3σ,μ+3σ)之內(nèi)的概率為0.9974,而主要藥理成分含量在(μ﹣3σ,μ+3σ)之內(nèi)的概率為0.0026,
故X~B(20,0.0026),∴P(X=1)0.997419×0.0026≈0.0494.
X的數(shù)學(xué)期望E(X)=20×0.0026≈0.052.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓:,為左、右焦點(diǎn),為短軸端點(diǎn),且,離心率為,為坐標(biāo)原點(diǎn).
(1)求橢圓的方程,
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓C恒有兩個(gè)交點(diǎn),,且滿足?若存在,求出該圓的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車尾氣中含有一氧化碳(),碳?xì)浠衔铮?/span>)等污染物,是環(huán)境污染的主要因素之一,汽車在使用若干年之后排放的尾氣中的污染物會(huì)出現(xiàn)遞增的現(xiàn)象,所以國家根據(jù)機(jī)動(dòng)車使用和安全技術(shù)、排放檢驗(yàn)狀況,對達(dá)到報(bào)廢標(biāo)準(zhǔn)的機(jī)動(dòng)車實(shí)施強(qiáng)制報(bào)廢.某環(huán)保組織為了解公眾對機(jī)動(dòng)車強(qiáng)制報(bào)廢標(biāo)準(zhǔn)的了解情況,隨機(jī)調(diào)查了100人,所得數(shù)據(jù)制成如下列聯(lián)表:
不了解 | 了解 | 總計(jì) | |
女性 | 50 | ||
男性 | 15 | 35 | 50 |
總計(jì) | 100 |
(1)若從這100人中任選1人,選到了解機(jī)動(dòng)車強(qiáng)制報(bào)廢標(biāo)準(zhǔn)的人的概率為,問是否有的把握認(rèn)為“對機(jī)動(dòng)車強(qiáng)制報(bào)廢標(biāo)準(zhǔn)是否了解與性別有關(guān)”?
(2)該環(huán)保組織從相關(guān)部門獲得某型號汽車的使用年限與排放的尾氣中濃度的數(shù)據(jù),并制成如圖所示的折線圖,若該型號汽車的使用年限不超過15年,可近似認(rèn)為排放的尾氣中濃度與使用年限線性相關(guān),試確定關(guān)于的回歸方程,并預(yù)測該型號的汽車使用12年排放尾氣中的濃度是使用4年的多少倍.
附:()
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:用最小二乘法求線性回歸方程系數(shù)公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長軸長為4,直線被橢圓截得的線段長為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的右頂點(diǎn)作互相垂直的兩條直線分別交橢圓于兩點(diǎn)(點(diǎn)不同于橢圓的右頂點(diǎn)),證明:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為(, 為參數(shù)),曲線的極坐標(biāo)方程為.
(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線的形狀;
(2)若直線經(jīng)過點(diǎn),求直線被曲線截得的線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且.
(Ⅰ)求;
(Ⅱ)在函數(shù)的圖象上取定兩點(diǎn),,記直線的斜率為,問:是否存在,使成立?若存在,求出的值(用表示);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了了解該企業(yè)工人組裝某產(chǎn)品所用時(shí)間,對每個(gè)工人組裝一個(gè)該產(chǎn)品的用時(shí)作了記錄,得到大量統(tǒng)計(jì)數(shù)據(jù).從這些統(tǒng)計(jì)數(shù)據(jù)中隨機(jī)抽取了個(gè)數(shù)據(jù)作為樣本,得到如圖所示的莖葉圖(單位:分鐘).若用時(shí)不超過(分鐘),則稱這個(gè)工人為優(yōu)秀員工.
(1)求這個(gè)樣本數(shù)據(jù)的中位數(shù)和眾數(shù);
(2)以這個(gè)樣本數(shù)據(jù)中優(yōu)秀員工的頻率作為概率,任意調(diào)查名工人,求被調(diào)查的名工人中優(yōu)秀員工的數(shù)量分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南北朝時(shí)期的數(shù)學(xué)家祖暅提出了計(jì)算體積的祖暅原理:“冪勢既同,則積不容異。”意思是:兩個(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體的體積相等.已知曲線,直線為曲線在點(diǎn)處的切線.如圖所示,陰影部分為曲線、直線以及軸所圍成的平面圖形,記該平面圖形繞軸旋轉(zhuǎn)一周所得的幾何體為.給出以下四個(gè)幾何體:
① ② ③ ④
圖①是底面直徑和高均為的圓錐;
圖②是將底面直徑和高均為的圓柱挖掉一個(gè)與圓柱同底等高的倒置圓錐得到的幾何體;
圖③是底面邊長和高均為的正四棱錐;
圖④是將上底面直徑為,下底面直徑為,高為的圓臺(tái)挖掉一個(gè)底面直徑為,高為的倒置圓錐得到的幾何體.
根據(jù)祖暅原理,以上四個(gè)幾何體中與的體積相等的是( )
A. ①B. ②C. ③D. ④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱的各條棱長均相等, 為的中點(diǎn), 分別是線段和線段上的動(dòng)點(diǎn)(含端點(diǎn)),且滿足.當(dāng)運(yùn)動(dòng)時(shí),下列結(jié)論中不正確的是( )
A. 平面平面 B. 三棱錐的體積為定值
C. 可能為直角三角形 D. 平面與平面所成的銳二面角范圍為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com