已知正四棱柱,點(diǎn)E為的中點(diǎn),F(xiàn)為的中點(diǎn)。
⑴求與DF所成角的大;
⑵求證:;
⑶求點(diǎn)到面BDE的距離。
(1)(2)證明見解析(3)
(1)取中點(diǎn),連,則的中點(diǎn)N,連所成的角。.
過N作
所成的角為
(2)連BE,則為等腰三角形,
平面
(3)可知設(shè)到面BDE的距離為,則
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平面ACB⊥平面BCD,∠CAB=∠CBD=900, ∠BDC=600,BC=6,AB=AC.
(Ⅰ)求證:平面ABD⊥平面ACD;(Ⅱ)求二面角A—CD—B的平面角的正切值;
(Ⅲ)設(shè)過直線AD且與BC平行的平面為,求點(diǎn)B到平面的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是直角梯形,,且,側(cè)面底面,是等邊三角形.
(1)求證:;
(2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知是直角梯形,,,,平面
(1) 證明:;
(2) 在上是否存在一點(diǎn),使得∥平面?若存在,找出點(diǎn),并證明:∥平面;若不存在,請說明理由;
(3)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖正方體ABCD-中,E、F、G分別是、AB、BC的中點(diǎn).
 。1)證明:⊥EG;
 。2)證明:⊥平面AEG;
  (3)求,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

正方體ABCD-A1B1C1D1中,棱長為,M為正方形DCC1D1的中心,E、F分別為A1D1、BC的中點(diǎn)
(1)求證:AM⊥平面B1FDE;
(2)求點(diǎn)A到平面EDFB1的距離;
(3)求二面角A-DE-F的大小。
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD是矩形,面ABCD,過BC作平面BCFE交AP于E,
交DP于F,求證:四邊形BCFE是梯形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一條直線與一個(gè)平面垂直,那么,稱此直線與平面構(gòu)成一個(gè)“正交線面對”。在一個(gè)正方體中,由兩個(gè)頂點(diǎn)確定的直線與頂點(diǎn)組成的平面(相同的平面算一個(gè))構(gòu)成的“正交線面對”的個(gè)數(shù)是
A.24B.36C.44D.56

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題



如圖,已知正方形和矩形所在的平面互相垂直,,,是線段的中點(diǎn).
(Ⅰ)求三棱錐的體積;
(Ⅱ)求證://平面;
(Ⅲ)求異面直線所成的角.

查看答案和解析>>

同步練習(xí)冊答案