【題目】已知橢圓:,圓:,一動圓在軸右側與軸相切,同時與圓相外切,此動圓的圓心軌跡為曲線,橢圓與曲線有相同的焦點.
(1)求曲線的方程;
(2)設曲線與橢圓相交于第一象限點,且,求橢圓的標準方程;
(3)在(2)的條件下,如果橢圓的左頂點為,過且垂直于軸的直線與橢圓交于,兩點,直線,與直線:分別交于,兩點,證明:四邊形的對角線的交點是橢圓的右頂點.
【答案】(1)(2)(3)見解析
【解析】
(1)設動圓圓心的坐標為,,計算化簡得到答案.
(2)計算,則,得到答案.
(3)計算,,,直線的方程為,令,得,得到答案.
(1)設動圓圓心的坐標為,因為動圓在軸右側與軸相切,同時與圓相外切,所以,所以,化簡整理得,
曲線的方程為.
(2)依題意,,,可得,故點坐標為,
橢圓的另一焦點為,
由兩點間的距離可得,
又由橢圓的定義得,.
所以,所以橢圓的標準方程為.
(3)由(2)知,,直線的方程為,
根據(jù)橢圓的對稱性,當直線軸時,四邊形是等腰梯形,對角線的交點在軸上,此時直線的方程為,
由,,不妨取,,
故直線的方程為,將代入得,
所以直線的方程為,令,得,
即直線與軸的交點為,此時恰好為橢圓的右頂點.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,直線交橢圓于兩點,為坐標原點.
(1)若直線過橢圓的右焦點,求的面積;
(2)若,試問橢圓上是否存在點,使得四邊形為平行四邊形?若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是拋物線的焦點,點是拋物線上一點,且,直線過定點(4,0),與拋物線交于兩點,點在直線上的射影是.
(1)求的值;
(2)若,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,左右頂點分別為,,右焦點為,為橢圓上異于,的動點,且面積的最大值為.
(1)求橢圓的方程;
(2)設直線與軸交于點,過點作的平行線交軸與點,試探究是否存在定點,使得以為直徑的圓恒過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在棱長為12的正方體中,已知E,F分別為棱AB,的中點,若過點,E,F的平面截正方體所得的截面為一個多邊形,則該多邊形的周長為________,該多邊形與平面,ABCD的交線所成角的余弦值為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且四個頂點構成的四邊形的面積是.
(1)求橢圓的方程;
(2)已知直線經過點,且不垂直于軸,直線與橢圓交于,兩點,為的中點,直線與橢圓交于,兩點(是坐標原點),求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,底面四邊形是直角梯形,底面,,,,,為的中點.
(1)求證:平面;
(2)若直線與平面所成角的正弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】紋樣是中國傳統(tǒng)文化的重要組成部分,它既代表著中華民族的悠久歷史、社會的發(fā)展進步,也是世界文化藝術寶庫中的巨大財富.小楠從小就對紋樣藝術有濃厚的興趣.收集了如下9枚紋樣微章,其中4枚鳳紋徽章,5枚龍紋微章.小楠從9枚徽章中任取3枚,則其中至少有一枚鳳紋徽章的概率為( ).
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com