5.已知正項數(shù)列{an}中,a1=2,an+1=4an2,求數(shù)列{an}的通項公式an

分析 正項數(shù)列{an}中,an+1=4an2,兩邊取對數(shù)可得:lgan+1=2lg2+2lgan,變形為:lgan+1+2lg2=2(lgan+2lg2),利用等比數(shù)列的通項公式即可得出.

解答 解:∵正項數(shù)列{an}中,an+1=4an2,
兩邊取對數(shù)可得:lgan+1=2lg2+2lgan
變形為:lgan+1+2lg2=2(lgan+2lg2),
∴數(shù)列{lgan+2lg2}是等比數(shù)列,首項為3lg2,公比為2.
∴l(xiāng)gan+2lg2=3lg2×2n-1=3×2n-1lg2,
∴an=${2}^{3×{2}^{n-1}-2}$.

點評 本題考查了等比數(shù)列的通項公式、遞推關(guān)系、對數(shù)的運算性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知矩陣A=$[\begin{array}{l}1-2\\ 3-5\end{array}]$,若矩陣Z滿足A-1Z=$[\begin{array}{l}1\\ 1\end{array}]$,試求矩陣Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.C${\;}_{2}^{1}$+C${\;}_{3}^{2}$+C${\;}_{4}^{3}$+C${\;}_{5}^{4}$+…+C${\;}_{100}^{99}$=5049.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.限制作答題
容量為20的樣本的數(shù)據(jù),分組后的頻數(shù)如表.
組距[10,20)[20,30)[30,40)[40,50)[50,60)[60,70)
頻數(shù)234542
則樣本數(shù)據(jù)落在區(qū)間[10,40]上的頻率為0.45.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)i是虛數(shù)單位,若復(fù)數(shù)z滿足z(1-i)=1+i,則復(fù)數(shù)z=( 。
A.-1B.1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)正項等比數(shù)列{an}中,a1=2,$\frac{1}{2}{a_3}$是3a1與2a2的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}的各項為正,且bn是$\frac{n}{a_n}$與$\frac{n}{{{a_{n+2}}}}$的等比中項,求數(shù)列{bn}的前n項和Tn;若對任意n∈N*都有Tn>logm2成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$\overrightarrow a,\overrightarrow b$是平面向量,如果|${\overrightarrow a}$|=$\sqrt{6}$,|${\overrightarrow b}$|=$\sqrt{3}$,(${\overrightarrow a$+2$\overrightarrow b}$)⊥(2$\overrightarrow a$-$\overrightarrow b}$),那么$\overrightarrow a$與$\overrightarrow b$的數(shù)量積等于( 。
A.-2B.-1C.2D.3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若P=$\sqrt{7}$-1,Q=$\sqrt{11}$-$\sqrt{5}$,則P與Q的大小關(guān)系是P>Q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若集合A={1,2,3,4},B={2,4,7,8},C={1,3,4,5,9},則集合(A∪B)∩C的子集個數(shù)是( 。
A.3B.6C.8D.9

查看答案和解析>>

同步練習(xí)冊答案