分析 (1)證明∠TCD=∠TAB,即可證明AB∥CD;
(2)證明:∠MTD=∠ATM,利用正弦定理證明$\frac{MD}{MC}$=$\frac{TD}{TC}$,由AB∥CD知$\frac{TD}{TC}$=$\frac{BD}{AC}$,即可證明AC•MD=BD•CM.
解答 證明:(1)由弦切角定理可知,∠NTB=∠TAB,…(3分)
同理,∠NTB=∠TCD,所以,∠TCD=∠TAB,
所以,AB∥CD.…(5分)
(2)連接TM、AM,
因?yàn)镃D是切內(nèi)圓于點(diǎn)M,
所以由弦切角定理知,∠CMA=∠ATM,
又由(Ⅰ)知AB∥CD,
所以,∠CMA=∠MAB,又∠MTD=∠MAB,
所以∠MTD=∠ATM.…(8分)
在△MTD中,由正弦定理知,$\frac{MD}{sin∠DTM}=\frac{TD}{sin∠TMD}$,
在△MTC中,由正弦定理知,$\frac{MC}{sin∠ATM}=\frac{TC}{sin∠TMC}$,因∠TMC=π-∠TMD,
所以$\frac{MD}{MC}$=$\frac{TD}{TC}$,由AB∥CD知$\frac{TD}{TC}$=$\frac{BD}{AC}$,
所以$\frac{MD}{MC}$=$\frac{BD}{AC}$,即AC•MD=BD•CM.…(10分)
點(diǎn)評(píng) 本題考查正弦定理,弦切角定理,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
患心肺疾病 | 不患心肺疾病 | 合計(jì) | |
男 | 5 | ||
女 | 10 | ||
合計(jì) | 50 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com