【題目】據(jù)統(tǒng)計(jì),某物流公司每天的業(yè)務(wù)中,從甲地到乙地的可配送的貨物量的頻率分布直方圖,如圖所示,將頻率視為概率,回答以下問題.

(1)求該物流公司每天從甲地到乙地平均可配送的貨物量;

(2)該物流公司擬購置貨車專門運(yùn)營從甲地到乙地的貨物,一輛貨車每天只能運(yùn)營一趟,每輛車每

趟最多只能裝載40 件貨物,滿載發(fā)車,否則不發(fā)車。若發(fā)車,則每輛車每趟可獲利1000 元;若未發(fā)車,

則每輛車每天平均虧損200 元。為使該物流公司此項(xiàng)業(yè)務(wù)的營業(yè)利潤最大,該物流公司應(yīng)該購置幾輛貨

車?

【答案】(1)125(2)每天應(yīng)該發(fā)3趟車.

【解析】試題分析:(1)每組中點(diǎn)值與對(duì)應(yīng)頻率相乘,在求和即可得結(jié)果;(2)若發(fā)2趟車,則的可能取值為2000,800,得結(jié)果若發(fā)3趟車,則 的可能取值為3000,1800,600,分別求期望,比較大小即可.

試題解析:(1)在區(qū)間的頻率為,

從甲地到乙地每天的平均客流量為: .

(2)從甲地到乙地的客流量的概率分別為.

設(shè)運(yùn)輸公司每天的營業(yè)利潤為.

若發(fā)一趟車,則的值為1000;

②若發(fā)2趟車,則的可能取值為2000,800,其分而列為

2000

800

;

若發(fā)3趟車,則的可能取值為3000,1800,600,其分布列為

3000

1800

600

;

若發(fā)4趟車,則的可能取值為4000,2800,1600,400其分布列為

4000

2800

1600

400

;

因?yàn)?400>2350>1850>1000,

所以為使運(yùn)輸公司每天的營業(yè)利潤最大,該公司每天應(yīng)該發(fā)3趟車.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足,且是等比數(shù)列.

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos4x﹣sin4x.下列結(jié)論正確的是(
A.函數(shù)f(x)在區(qū)間[0, ]上是減函數(shù)
B.函數(shù)f(x)的圖象關(guān)于原點(diǎn)對(duì)稱
C.f(x)的最小正周期為
D.f(x)的值域?yàn)閇﹣ , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù), 是自然對(duì)數(shù)的底數(shù), ).

(Ⅰ)求證: ;

(Ⅱ)已知表示不超過的最大整數(shù),如 ,若對(duì)任意,都存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的圓心在直線上,且與直線相切于點(diǎn)

1)求圓C的方程;

2)是否存在過點(diǎn)的直線與圓C交于兩點(diǎn),且的面積為O為坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班級(jí)有50名學(xué)生,其中有30名男生和20名女生,隨機(jī)詢問了該班五名男生和五名女生在某次數(shù)學(xué)測(cè)驗(yàn)中的成績,五名男生的成績分別為86,94,88,92,90,五名女生的成績分別為88,93,93,88,93,下列說法正確的是(
A.這種抽樣方法是一種分層抽樣
B.這種抽樣方法是一種系統(tǒng)抽樣
C.這五名男生成績的方差大于這五名女生成績的方差
D.該班男生成績的平均數(shù)大于該班女生成績的平均數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列的前項(xiàng)和為,已知.

1)試寫出;

2)設(shè),求證:數(shù)列是等比數(shù)列;

3)求出數(shù)列的前項(xiàng)和為及數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了選拔優(yōu)秀學(xué)生參加廣州市高二級(jí)數(shù)學(xué)競(jìng)賽.現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取了5次,記錄如下(單位:分):

甲  83  81  79  95  92 

乙  92  85  75  88  90 

(1)甲乙兩人分?jǐn)?shù)的極差分別是多少?并用莖葉圖表示這兩組數(shù)據(jù).

(2)甲乙兩人這5次成績的平均分和方差各是多少?從穩(wěn)定性的角度考慮,你認(rèn)為選派哪位學(xué)生參加比賽較合適?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=f(x)在R上可導(dǎo)且滿足不等式xf′(x)+f(x)>0恒成立,且常數(shù)a,b滿足a>b,則下列不等式一定成立的是(  )
A.af(a)>bf(b)
B.af(b)>bf(a)
C.af(a)<bf(b)
D.af(b)<bf(a)

查看答案和解析>>

同步練習(xí)冊(cè)答案