【題目】某煤礦發(fā)生透水事故時(shí),作業(yè)區(qū)有若干人員被困.救援隊(duì)從入口進(jìn)入之后有L1L2兩條巷道通往作業(yè)區(qū)(如下圖),L1巷道有A1,A2,A3三個(gè)易堵塞點(diǎn),各點(diǎn)被堵塞的概率都是;L2巷道有B1B2兩個(gè)易堵塞點(diǎn),被堵塞的概率分別為.

(1)求L1巷道中,三個(gè)易堵塞點(diǎn)最多有一個(gè)被堵塞的概率;

(2)若L2巷道中堵塞點(diǎn)個(gè)數(shù)為X,求X的分布列及均值E(X),并按照“平均堵塞點(diǎn)少的巷道是較好的搶險(xiǎn)路線”的標(biāo)準(zhǔn),請(qǐng)你幫助救援隊(duì)選擇一條搶險(xiǎn)路線,并說(shuō)明理由.

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析

【解析】試題分析:()利用互獨(dú)立事件的概率計(jì)算公式即可得出;()比較走兩條路的數(shù)學(xué)期望的大小,即可得出要選擇的路線

試題解析:()設(shè)”L1巷道中,三個(gè)易堵塞點(diǎn)最多有一個(gè)被堵塞為事件A

)依題意,X的可能取值為0,1,2

所以,隨機(jī)變量X的分布列為:

X

0

1

2

P




設(shè)L1巷道中堵塞點(diǎn)個(gè)數(shù)為Y,則Y的可能取值為0,12,3,

,

,

所以,隨機(jī)變量Y的分布列為:

Y

0

1

2

3

P





因?yàn)?/span>EXEY,所以選擇L2巷道為搶險(xiǎn)路線為好.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量,,函數(shù)的最小值為

(1)當(dāng)時(shí),求的值;

(2)求

(3)已知函數(shù)為定義在R上的增函數(shù),且對(duì)任意的都滿足

問(wèn):是否存在這樣的實(shí)數(shù)m,使不等式 +對(duì)所有

恒成立,若存在,求出m的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長(zhǎng)度單位,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸.已知曲線C1的極坐標(biāo)方程為ρ=2 sin( ),直線C的極坐標(biāo)方程為ρsinθ=1,射線θ=φ,θ= +φ(φ∈[0,π])與曲線C1分別交異于極點(diǎn)O的兩點(diǎn)A,B.
(I)把曲線C1和C2化成直角坐標(biāo)方程,并求直線C2被曲線C1截得的弦長(zhǎng);
(II)求|OA|2+|OB|2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線經(jīng)過(guò)點(diǎn)軸、軸分別交于兩點(diǎn),且,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 是邊長(zhǎng)為3的正方形, 平面, 平面, .

(1)證明:平面平面

(2)在上是否存在一點(diǎn),使平面將幾何體分成上下兩部分的體積比為?若存在,求出點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD一邊CD所在直線的方程為x+3y-13=0,對(duì)角線AC,BD的交點(diǎn)為P(1,5),求正方形ABCD其他三邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017湖北部分重點(diǎn)中學(xué)高三聯(lián)考)從編號(hào)為001,002,…,500的500個(gè)產(chǎn)品中用系統(tǒng)抽樣的方法抽取一個(gè)樣本,已知樣本編號(hào)從小到大依次為007,032,…,則樣本中最大的編號(hào)應(yīng)該為(  )

A. 483 B. 482

C. 481 D. 480

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的最值;

(2)函數(shù)圖像在點(diǎn)處的切線斜率為有兩個(gè)零點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 的最小正周期為π.
(1)求ω的值;
(2)討論f(x)在區(qū)間 上的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案