已知函數(shù)f(x)=x2-2ax(a>0)求函數(shù)f(x)在[0,2]上的最大值g(a).
考點(diǎn):二次函數(shù)在閉區(qū)間上的最值
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意先求對(duì)稱軸x=a,再根據(jù)對(duì)開口方向與對(duì)稱軸求最大值.
解答: 解:函數(shù)f(x)=x2-2ax(a>0)的對(duì)稱軸為x=a;
①當(dāng)0<a≤1時(shí),
g(a)=f(2)=4-4a;
②當(dāng)a>1時(shí),
g(a)=f(0)=0;
故g(a)=
4-4a,0<a≤1
0,a>1
點(diǎn)評(píng):本題考查了二次函數(shù)的性質(zhì)應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

長(zhǎng)軸與短軸的和為18,焦距為6的橢圓方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在底面是直角梯形的四棱錐P-ABCD中,側(cè)棱PA⊥底面ABCD,BC∥AD,∠ABC=90°,PA=AB=BC=2,AD=1,則AD到平面PBC的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
6
),x∈R.
(1)用“五點(diǎn)法”畫出函數(shù)f(x)一個(gè)周期內(nèi)的簡(jiǎn)圖;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)當(dāng)x∈(
π
4
4
]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某地一填的溫度(單位:℃)隨時(shí)間t(單位:小時(shí))的變化近似滿足函數(shù)關(guān)系:f(t)=24-4sinωx-4
3
ωx,t∈[0,24),且早上8時(shí)的溫度為24℃,ω∈(0,
π
8

(Ⅰ)求函數(shù)的解析式,并判斷這一天的最高溫度是多少?出現(xiàn)在何時(shí)?
(Ⅱ)當(dāng)?shù)赜幸煌ㄏ鼱I(yíng)業(yè)的超市,為了節(jié)省開支,規(guī)定在環(huán)境溫度超過(guò)28℃時(shí),開啟中央空調(diào)降溫,否則關(guān)閉中央空調(diào),問(wèn)中央空調(diào)應(yīng)在可使開啟?何時(shí)關(guān)閉?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cosx•sin(x+
π
3
)-
3
cos2x+
3
4
,x∈R
(1)求f(x)的最小正周期;
(2)求f(x)在閉區(qū)間[0,
π
2
]上的最大值和最小值及相應(yīng)的x值;(3)若不等式|f(x)-m|<2在x∈[0,
π
2
]上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)|
m
|=1,|
n
|=2,2
m
+
n
m
-3
n
垂直,
a
=3
m
-2
n
b
=
m
+4
n
,則<
a
,
b
>=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,某三棱錐的三視圖均為直角邊為1的等腰直角三角形,則該三棱錐的表面積為( 。
A、
3
2
+
2
2
B、1+
2
C、
1
2
+
2
D、
1
2
+
3
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知條件p:實(shí)數(shù)x滿足(x-m)(x-3m)<0,其中m>0;條件q:實(shí)數(shù)x滿足8<2x+1≤16.
(1)若m=1,且“p且q”為真,求實(shí)數(shù)x的取值范圍;
(2)若q是p的充分不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案