1.在△ABC中,角A,B,C的對邊分別為a,b,c,已知$A={60°},b=4,{S_{△ABC}}=2\sqrt{3}$,則a=2$\sqrt{3}$.

分析 由已知利用三角形面積公式可求c,進而利用余弦定理可求a的值.

解答 解:∵$A={60°},b=4,{S_{△ABC}}=2\sqrt{3}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}×4×c×\frac{\sqrt{3}}{2}$,
∴解得:c=2,
∴由余弦定理可得:a=$\sqrt{^{2}+{c}^{2}-2bccosA}$=$\sqrt{{4}^{2}+{2}^{2}-2×4×2×\frac{1}{2}}$=2$\sqrt{3}$.
故答案為:2$\sqrt{3}$.

點評 本題主要考查了三角形面積公式,余弦定理在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知(ax+b)6的展開式中x4項的系數(shù)與x5項的系數(shù)分別為135與-18,則(ax+b)6展開式所有項系數(shù)之和為( 。
A.-1B.1C.32D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.?dāng)?shù)列{an}的前n項和是Sn,且Sn+$\frac{1}{2}$an=1,數(shù)列{bn},{cn}滿足bn=log3$\frac{{{a}_{n}}^{2}}{4}$,cn=$\frac{1}{_{n}_{n+2}}$.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)數(shù)列{cn}的前n項和為Tn,若不等式Tn<m對任意的正整數(shù)n恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在三棱柱ABC-A1B1C1中,△ABC是邊長為2的正三角形,側(cè)面BB1C1C為矩形,D,E,F(xiàn)分別是線段BB1,AC1,A1C1的中點.
(1)求證:DE∥平面A1B1C1
(2)若平面ABC⊥平面BB1C1C,BB1=4,求三棱錐C-AC1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若變量x,y滿足不等式組$\left\{\begin{array}{l}y≤2\\ x+y≥1\\ x-y≤a\end{array}\right.$,且z=3x-y的最大值為7,則實數(shù)a的值為( 。
A.1B.7C.-1D.-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.根據(jù)國家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米.我市環(huán)保局隨機抽取了一居民區(qū)2016年20天PM2.5的24小時平均濃度(單位:微克/立方米)的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如表:
組別PM2.5濃度
(微克/立方米)
頻數(shù)(天)頻率
 第一組(0,25]30.15
第二組(25,50]120.6
第三組(50,75]30.15
第四組(75,100]20.1
(1)將這20天的測量結(jié)果按上表中分組方法繪制成的樣本頻率分布直方圖如圖.
①求圖4中a的值;
②求樣本平均數(shù),并根據(jù)樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說明理由.
(2)將頻率視為概率,對于2016年的某3天,記這3天中該居民區(qū)PM2.5的24小時平均濃度符合環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)的天數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知平面向量$\overrightarrow{a}$=(3,4),$\overrightarrow$=(x,$\frac{1}{2}$),若$\overrightarrow{a}$∥$\overrightarrow$,則實數(shù)x為( 。
A.-$\frac{2}{3}$B.$\frac{2}{3}$C.$\frac{3}{8}$D.-$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知i是虛數(shù)單位,復(fù)數(shù)z=$\frac{1-2i}{i}$,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知拋物線C:y2=2px(p>0)的焦點F到其準(zhǔn)線的距離為2,直線l與拋物線C相交于A、B兩點
(1)求出拋物線C的方程以及焦點坐標(biāo),準(zhǔn)線方程;
(2)若直線l經(jīng)過拋物線的焦點F,當(dāng)線段AB的長為5時,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案