【題目】已知函數(shù)為自然對數(shù)的底數(shù),.

1)求函數(shù)在點處的切線方程;

2)若對于任意,存在,使得,求的取值范圍;

3)若恒成立,求的取值范圍.

【答案】1;(2;(3.

【解析】

1)對函數(shù)求導(dǎo),求得,,由直線的點斜式方程可求得切線;

2)對函數(shù)求導(dǎo),得出函數(shù)上單調(diào)性,可求得函數(shù)上的最值,再根據(jù)對于任意,存在,使得,則需,

討論a可求得a的范圍;

(3) )因為,所以由,則,分析導(dǎo)函數(shù)的正負,得出原函數(shù)的單調(diào)性,從而得出最值,根據(jù)不等式恒成立的思想得出求得a的范圍.

1,,,又,

所以切線方程為:,即;

2,時,,上單調(diào)遞增,,

由于對于任意,存在,使得,則需,

當(dāng)時,,不滿足,故,

當(dāng)時,上單調(diào)遞增,,所以,解得

當(dāng)時,上單調(diào)遞減,所以上沒有最大值,所以不滿足,

綜上可得,;

(3)因為,所以由,則,

上單調(diào)遞減,且,所以存在唯一的零點,使得,

即有也即有,,即,

所以,,所以上單調(diào)遞增,在上遞減,所以,

,所以,

所以.

所以的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)統(tǒng)計,某5家鮮花店今年4月的銷售額和利潤額資料如下表:

鮮花店名稱

A

B

C

D

E

銷售額x(千元)

3

5

6

7

9

利潤額y(千元)

2

3

3

4

5

1)用最小二乘法計算利潤額y關(guān)于銷售額x的回歸直線方程=x+;

2)如果某家鮮花店的銷售額為8千元時,利用(1)的結(jié)論估計這家鮮花店的利潤額是多少.

參考公式:回歸方程中斜率和截距的最小二乘法估計值公式分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中常數(shù)

(1)當(dāng)時,討論的單調(diào)性

(2)當(dāng)時,是否存在整數(shù)使得關(guān)于的不等式在區(qū)間內(nèi)有解?若存在,求出整數(shù)的最小值;若不存在,請說明理由.

參考數(shù)據(jù):,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點都在圓上.

(1)求圓的方程;

(2)若圓與直線交于,兩點,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一個由0和1構(gòu)成的6行n列的 數(shù)字方陣,其中每行中恰有5個1,任意兩行中同一列都取1的列數(shù)不超過2.求n的 最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電子芯片是“中國智造”的靈魂,是所有整機設(shè)備的“心臟”.某國產(chǎn)電子芯片公司,通過大數(shù)據(jù)分析,得到如下規(guī)律:生產(chǎn)一種高端芯片x)萬片,其總成本為,其中固定成本為800萬元,并且每生產(chǎn)1萬片的生產(chǎn)成本為200萬元(總成本=固定成本+生產(chǎn)成本),銷售收入(單位:萬元)滿足假定生產(chǎn)的芯片都能賣掉.

1)將利潤(單位:萬元)表示為產(chǎn)量x(單位:萬片)的函數(shù);

2)當(dāng)產(chǎn)量x(單位:萬片)為何值時,公司所獲利潤最大?最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①是反映某條公交線路收支差額(即營運所得票價收入與付出成本的差)與乘客量之間關(guān)系的圖像.由于目前該條公交線路虧損,公司有關(guān)人員提出了兩種調(diào)整的建議,如圖②③所示:

給出下列說法:(1)圖②的建議:提高成本,并提高票價;(2)圖②的建議:降低成本,并保持票價不變;(3)圖③的建議:提高票價,并保持成本不變;(4)圖③的建議:提高票價,并降低成本.其中所有說法正確的序號是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一汽車廠生產(chǎn),,三類轎車,每類轎車均有舒適型和標(biāo)準型兩種型號,某月的產(chǎn)量如下表(單位:輛):按類用分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有類轎車10輛.

轎車

轎車

轎車

舒適型

100

150

標(biāo)準型

300

450

600

1)求的值;

2)用分層抽樣的方法在類轎車中抽取一個容量為5的樣本.將該樣本看成一個總體,從中任取2輛,求至少有1輛舒適型轎車的概率;

3)用隨機抽樣的方法從類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2 把這8輛轎車的得分看作一個總體,從中任取一個得分數(shù),記這8輛轎車的得分的平均數(shù)為,定義事件,且函數(shù)沒有零點,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)yf1x),yf2x),定義函數(shù)fx

1)設(shè)函數(shù)f1x)=x+3,f2x)=x2x,求函數(shù)yfx)的解析式;

2)在(1)的條件下,gx)=mx+2mR),函數(shù)hx)=fx)﹣gx)有三個不同的零點,求實數(shù)m的取值范圍;

3)設(shè)函數(shù)f1x)=x22,f2x)=|xa|,函數(shù)Fx)=f1x+f2x),求函數(shù)Fx)的最小值.

查看答案和解析>>

同步練習(xí)冊答案