分析 (I)過(guò)A作AM⊥BC,垂足為M,連結(jié)MF,通過(guò)計(jì)算CM,BM可得$\frac{CM}{BM}=\frac{9}{4}$,于是MF∥BB′∥AA′,于是AM?平面AA′F,再利用側(cè)棱AA′⊥底面ABC得出BC⊥AA′即可得出結(jié)論;
(II)作出截面A′EF左右兩側(cè)的幾何體,則右側(cè)為四棱錐,且底面為矩形,高與AM相等,利用三棱柱的體積減去V2即為V1.
解答 解:(I)過(guò)A作AM⊥BC,垂足為M,連結(jié)MF
∵AA′⊥平面ABC,BC?平面ABC,
∴AA′⊥BC,
∵AB⊥AC,AB=2,AC=3,
∴BC=$\sqrt{A{B}^{2}+A{C}^{2}}$=$\sqrt{13}$,AM=$\frac{AB•AC}{BC}$=$\frac{6}{\sqrt{13}}$.
∴CM=$\sqrt{A{C}^{2}-A{M}^{2}}$=$\frac{9}{\sqrt{13}}$,BM=BC-CM=$\frac{4}{\sqrt{13}}$.
∴$\frac{CM}{BM}=\frac{CF}{BF}=\frac{9}{4}$.
∴MF∥BB′∥AA′,
∴AM?平面AA′F.
又AA′?平面AA′F,AM∩AA′=A,
∴BC⊥平面AA′F.
(II)取CC′中點(diǎn)N,連結(jié)EN,AN,AE,
∵AA′⊥平面ABC,AA′∥BB′,
∴BB′⊥平面ABC,
∵BC?平面ABC,AM?平面ABC,
∴BB′⊥AM,BB′⊥BC,
又AM⊥BC,BC?平面BB′C′C,BB′?平面BB′C′C,BC∩BB′=B,
AM⊥平面BB′C′C,
∴V2=VA′-B′C′NE=$\frac{1}{3}{S}_{矩形B′C′NE}•AM$=$\frac{1}{3}×\frac{3}{2}×\sqrt{13}×\frac{6}{\sqrt{13}}$=3.
又VABC-A′B′C′=S△ABC•AA′=$\frac{1}{2}×2×3×3$=9,
∴V1=VABC-A′B′C′-V2=6.
點(diǎn)評(píng) 本題考查了線面垂直的判定,棱錐的體積計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 圓 | B. | 橢圓 | C. | 拋物線 | D. | 雙曲線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com