【題目】如圖,橢圓 ()的離心率是,過點(,)的動直線與橢圓相交于,兩點,當直線平行于軸時,直線被橢圓截得的線段長為.
⑴求橢圓的方程:
⑵已知為橢圓的左端點,問: 是否存在直線使得的面積為?若不存在,說明理由,若存在,求出直線的方程.
【答案】(1);(2)存在直線方程使得.
【解析】
試題分析:(1)借助題設(shè)條件建立方程組求解;(2)依據(jù)題設(shè)運用直線與橢圓的位置關(guān)系進行探求.
試題解析:
(1)橢圓:的離心率是,過點的動直線與橢圓相交于兩點,
當直線平行于軸時,直線被橢圓截得的線段長為,
點在橢圓上,
,解得:,………………4分
橢圓的方程為………………………5分,
(2)當直線與軸平行時,不存在,…………………6分,
設(shè)直線的方程為,并設(shè)兩點,,
聯(lián)立,得,
其判別式,…………8分,
,,
,…………10分
假設(shè)存在直線,則有,
解得,負解刪除,,……………………12分
故存在直線方程使得…………13分.
科目:高中數(shù)學 來源: 題型:
【題目】一盒中放有的黑球和白球,其中黑球4個,白球5個.
(1)從盒中同時摸出兩個球,求兩球顏色恰好相同的概率.
(2)從盒中摸出一個球,放回后再摸出一個球,求兩球顏色恰好不同的概率.
(3)從盒中不放回的每次摸一球,若取到白球則停止摸球,求取到第三次時停止摸球的概率
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)是奇函數(shù),且滿足f(x)=f(x+3),f(-2)=-3.若數(shù)列{an}中,a1=-1,且前n項和Sn滿足=2×+1,則f(a5)+f(a6)=________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進行調(diào)查,隨機抽調(diào)了50人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如下表:
(1)由以上統(tǒng)計數(shù)據(jù)填下面列聯(lián)表,并問是否有99%的把握認為以45歲為分界點對“生育二胎放開”政策的支持度有差異;
(2)若對年齡在的被調(diào)查人中各隨機選取兩人進行調(diào)查,恰好這兩人都支持“生育二胎放開”的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,六面體ABCDHEFG中,四邊形ABCD為菱形,AE,BF,CG,DH都垂直于平面ABCD.若DA=DH=DB=4,AE=CG=3。
(1)求證:EG⊥DF;
(2)求BE與平面EFGH所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),給出下列結(jié)論:
(1)若對任意,且,都有,則為R上的減函數(shù);
(2)若為R上的偶函數(shù),且在內(nèi)是減函數(shù), (-2)=0,則>0解集為(-2,2);
(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);
(4)t為常數(shù),若對任意的,都有則關(guān)于對稱。
其中所有正確的結(jié)論序號為_________
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.且曲線的左焦點在直線上.
(1)若直線與曲線交于兩點,求的值;
(2)求曲線的內(nèi)接矩形的周長的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】化為推出一款6寸大屏手機,現(xiàn)對500名該手機使用者(200名女性,300名男性)進行調(diào)查,對手機進行打分,打分的頻數(shù)分布表如下:
女性用戶:
分值區(qū)間 | |||||
頻數(shù) | 20 | 40 | 80 | 50 | 10 |
分值區(qū)間 | |||||
頻數(shù) | 45 | 75 | 90 | 60 | 30 |
男性用戶:
(1)如果評分不低于70分,就表示該用戶對手機“認可”,否則就表示“不認可”,完成下列列聯(lián)表,并回答是否有的把握認為性別對手機的“認可”有關(guān):
女性用戶 | 男性用戶 | 合計 | |
“認可”手機 | |||
“不認可”手機 | |||
合計 |
附:
0.05 | 0.01 | |
3.841 | 6635 |
(2)根據(jù)評分的不同,運用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評分不低于80分的用戶中任意抽取3名用戶,求3名用戶中評分小于90分的人數(shù)的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com