【題目】已知, 對(duì)邊分別為,已知.

1)若的面積等于,求;

2)若,求的面積.

【答案】(1, ;(2

【解析】試題分析:(1)由ccosC的值,利用余弦定理列出關(guān)系式,再由三角形的面積公式,以及已知的面積與sinC的值,求出ab=4,兩關(guān)系式聯(lián)立組成方程組,求出方程組的解得到ab的值,即可判斷出三角形為等腰三角形;(2)由sinC=sinA+B),代入已知的等式中,右邊利用二倍角的正弦函數(shù)公式化簡(jiǎn),整理后分cosA=0cosA不為0兩種情況考慮,分別求出ab的值即可

試題解析:(1)由余弦定理及已知條件得, ,

又因?yàn)?/span>的面積等于,所以,得

聯(lián)立方程組解得

2)由題意得,

,當(dāng)時(shí), ,

所以的面積

當(dāng)時(shí),得,由正弦定理得

聯(lián)立方程組解得

所以的面積

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)求曲線公共弦的長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)際奧委會(huì)將于2017年9月15日在秘魯利馬召開(kāi)130次會(huì)議決定2024年第33屆奧運(yùn)會(huì)舉辦地。目前德國(guó)漢堡、美國(guó)波士頓等申辦城市因市民擔(dān)心賽事費(fèi)用超支而相繼退出。某機(jī)構(gòu)為調(diào)查我國(guó)公民對(duì)申辦奧運(yùn)會(huì)的態(tài)度,選了某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計(jì)如下:

(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫(xiě)完整;

(2)能否在犯錯(cuò)誤的概率不超過(guò)5%的前提下認(rèn)為不同年齡與支持申辦奧運(yùn)無(wú)關(guān)?

(3)已知在被調(diào)查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現(xiàn)從這5名女性中隨機(jī)抽取3人,求至多有1位教師的概率.

附: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(I), 恒成立,求常數(shù)的取值范.

已知非零常數(shù)滿足,求不等式的解集;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的圓心軸上,半徑為1,直線被圓所截的弦長(zhǎng)為,且圓心在直線的下方.

(1)求圓的方程;

(2)設(shè),若圓的內(nèi)切圓,求的面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓 ()的離心率是,過(guò)點(diǎn)(,)的動(dòng)直線與橢圓相交于,兩點(diǎn),當(dāng)直線平行于軸時(shí),直線被橢圓截得的線段長(zhǎng)為

求橢圓的方程:

已知為橢圓的左端點(diǎn),問(wèn): 是否存在直線使得的面積為?若不存在,說(shuō)明理由,若存在,求出直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本小題滿分12甲、乙兩袋中各裝有大小相同的小球個(gè),其中甲袋中紅色、黑色、白色小球的個(gè)數(shù)分別為、,乙袋中紅色、黑色、白色小球的個(gè)數(shù)均為,某人用左右手分別從甲、乙兩袋中取球

1若左右手各取一球,求兩只手中所取的球顏色不同的概率;

2若左右手依次各取兩球,稱(chēng)同一手中兩球顏色相同的取法為成功取法,記兩次取球的成功取法次數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有一個(gè)以、為半徑的扇形池塘,在、上分別取點(diǎn)、,作分別交弧于點(diǎn)、,且,現(xiàn)用漁網(wǎng)沿著、、將池塘分成如圖所示的養(yǎng)殖區(qū)域.已知, ).

(1)若區(qū)域Ⅱ的總面積為,求的值;

(2)若養(yǎng)殖區(qū)域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分別是30萬(wàn)元、40萬(wàn)元、20萬(wàn)元,試問(wèn):當(dāng)為多少時(shí),年總收入最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某次水下科研考察活動(dòng)中,需要潛水員潛入水深為60米的水底進(jìn)行作業(yè),根據(jù)已往經(jīng)驗(yàn),潛水員下潛的平均速度為/單位時(shí)間),每單位時(shí)間的用氧量為升),在水底作業(yè)10個(gè)單位時(shí)間,每單位時(shí)間用氧量為升),返回水面的平均速度為/單位時(shí)間),每單位時(shí)間用氧量為升),記該潛水員在此次考察活動(dòng)中的總用氧量為升).

(1關(guān)函數(shù)關(guān)系式;

(2,求當(dāng)下潛速度什么時(shí),總用氧量最少.

查看答案和解析>>

同步練習(xí)冊(cè)答案