【題目】已知函數(shù)在點處的切線方程為.

(1)若函數(shù)時有極值,求的解析式;

(2)函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍.

【答案】(1) f(x)=-x3-2x2+4x-3(2) [4,+∞)

【解析】試題分析:(1)對函數(shù)求導,由題意點P(1,-2)處的切線方程為,可得,再根據(jù),又由聯(lián)立方程求出a,b,c,從而求出f(x)的表達式.
(2)由題意函數(shù)f(x)在區(qū)間[-2,0]上單調(diào)遞增,對其求導可得f′(x)在區(qū)間[-2,0]大于或等于0,從而求出b的范圍.

試題解析:f′(x)=-3x2+2axb,函數(shù)f(x)在x=1處的切線斜率為-3,

所以f′(1)=-3+2ab=-3,即2ab=0,

f(1)=-1+abc=-2得abc=-1.

(1)函數(shù)f(x)在x=-2時有極值,

所以f′(-2)=-12-4ab=0,

由①②③解得a=-2,b=4,c=-3,所以f(x)=-x3-2x2+4x-3.

(2)因為函數(shù)f(x)在區(qū)間[-2,0]上單調(diào)遞增,所以導函數(shù)f′(x)=-3x2bxb在區(qū)間[-2,0]上的值恒大于或等于零,則

b≥4,所以實數(shù)b的取值范圍是[4,+∞).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》中有這樣一則問題:“今有良馬與弩馬發(fā)長安,至齊,齊去長安三千里,良馬初日行一百九十三里,日增一十三里;弩馬初日行九十七里,日減半里,良馬先至齊,復還迎弩馬.”則現(xiàn)有如下說法:

①弩馬第九日走了九十三里路;

②良馬前五日共走了一千零九十五里路;

③良馬和弩馬相遇時,良馬走了二十一日.

則以上說法錯誤的個數(shù)是( )個

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}為等比數(shù)列,a1=1,a4=27; Sn為等差數(shù)列{bn} 的前n 項和,b1=3,S5=35.

(1)求{an}和{bn} 的通項公式;

(2)設數(shù)列{cn} 滿足cn=anbn(n∈N*),求數(shù)列{cn} 的前n 項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某課題組對春晚參加“咻一咻”搶紅包活動的同學進行調(diào)查,按照使用手機系統(tǒng)不同(安卓系統(tǒng)和IOS系統(tǒng))分別隨機抽取5名同學進行問卷調(diào)查,發(fā)現(xiàn)他們咻得紅包總金額數(shù)如表所示:

手機系統(tǒng)

安卓系統(tǒng)(元)

2

5

3

20

9

IOS系統(tǒng)(元)

4

3

18

9

7


(1)如果認為“咻”得紅包總金額超過6元為“咻得多”,否則為“咻得少”,請判斷手機系統(tǒng)與咻得紅包總金額的多少是否有關?
(2)要從5名使用安卓系統(tǒng)的同學中隨機選出2名參加一項活動,以X表示選中的同學中咻得紅包總金額超過6元的人數(shù),求隨機變量X的分布列及數(shù)學期望E(X).
下面的臨界值表供參考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

獨立性檢驗統(tǒng)計量 ,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD與BDEF均為菱形,∠DAB=∠DBF=60°,且FA=FC.

(Ⅰ)求證:AC⊥平面BDEF;

(Ⅱ)求證:FC∥平面EAD;

(Ⅲ)求二面角A﹣FC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數(shù)方程為: (t為參數(shù),其中0<α< ),橢圓M的參數(shù)方程為 (β為參數(shù)),圓C的標準方程為(x﹣1)2+y2=1.
(1)寫出橢圓M的普通方程;
(2)若直線l為圓C的切線,且交橢圓M于A,B兩點,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一種計算裝置,有一數(shù)據(jù)入口A和一個運算出口B,按照某種運算程序:①當從A口輸入自然數(shù)1時,從B口得到 ,記為 ;②當從A口輸入自然數(shù)n(n≥2)時,在B口得到的結果f(n)是前一個結果f(n﹣1)的 倍. (Ⅰ)當從A口分別輸入自然數(shù)2,3,4時,從B口分別得到什么數(shù)?
(Ⅱ)根據(jù)(Ⅰ)試猜想f(n)的關系式,并用數(shù)學歸納法證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=log (x2﹣2x)的單調(diào)遞增區(qū)間是(
A.(﹣∞,0)
B.(﹣∞,1)
C.(2,+∞)
D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},已知A∩B={9},求a的值,并求出A∪B.

查看答案和解析>>

同步練習冊答案