分析 (1)由已知及正弦函數(shù)的圖象和性質可求最小正周期.
(2)由函數(shù)的最值求出A和C,由周期求出ω,由特殊點的坐標求出φ的值,可得函數(shù)的解析式,根據(jù)正弦函數(shù)的圖象的單調性求出函數(shù)f(x)的單調遞增區(qū)間.
解答 解:(1)由同一周期中最高點坐標為(2,2),最低點坐標為(8,-4),
可得:函數(shù)f(x)的最小正周期T=2×(8-2)=12,
(2)由同一周期中最高點坐標為(2,2),最低點坐標為(8,-4),
可得C=$\frac{2-4}{2}$=-1,A=2-(-1)=3,T=$\frac{2π}{ω}$=12,求得ω=$\frac{π}{6}$.
再把最高點坐標(2,2),代入函數(shù)的解析式可得 2=3sin($\frac{π}{3}$+φ)-1,
即sin($\frac{π}{2}$+φ)=1,結合,|φ|<$\frac{π}{2}$,可得φ=$\frac{π}{6}$,
故函數(shù)的解析式為y=3sin($\frac{π}{6}$x+$\frac{π}{6}$)-1.
令2kπ-$\frac{π}{2}$≤$\frac{π}{6}$x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈z,求得12k-4≤x≤12k+2,k∈z,
故函數(shù)的增區(qū)間為[12k-4,12k+2],k∈z.
點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的最值求出A和C,由周期求出ω,由特殊點的坐標求出φ的值,正弦函數(shù)的圖象的單調性,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{5}{3}$ | C. | -$\frac{5}{3}$ | D. | -$\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
x | -1 | 0 | 4 | 5 |
f(x) | 1 | 2 | 2 | 1 |
A. | 4個 | B. | 3個 | C. | 2個 | D. | 1個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com