A. | 垂心 | B. | 內心 | C. | 外心 | D. | 重心 |
分析 設 G 是三角形 ABC 的重心,P 是平面上任一點,則|$\overrightarrow{PA}$|2+|$\overrightarrow{PB}$|2+|$\overrightarrow{PC}$|2=|$\overrightarrow{PG}$+$\overrightarrow{GA}$|2+|$\overrightarrow{PG}+\overrightarrow{GB}$|2+|$\overrightarrow{PG}+\overrightarrow{GC}$|2=3|$\overrightarrow{PG}$|2+(|$\overrightarrow{GA}$|2+|$\overrightarrow{GB}$|2+|$\overrightarrow{GC}$|2),由此推導出到一個三角形的三個頂點的距離的平方和最小的點,是這個三角形的重心.
解答 解:到一個三角形的三個頂點的距離的平方和最小的點,是這個三角形的重心.
證明如下:
設 G 是三角形 ABC 的重心,P 是平面上任一點,
則|$\overrightarrow{PA}$|2+|$\overrightarrow{PB}$|2+|$\overrightarrow{PC}$|2
=|$\overrightarrow{PG}$+$\overrightarrow{GA}$|2+|$\overrightarrow{PG}+\overrightarrow{GB}$|2+|$\overrightarrow{PG}+\overrightarrow{GC}$|2
=3|$\overrightarrow{PG}$|2+(|$\overrightarrow{GA}$|2+|$\overrightarrow{GB}$|2+|$\overrightarrow{GC}$|2)+2($\overrightarrow{PG}$•$\overrightarrow{GA}$+$\overrightarrow{PG}•\overrightarrow{GB}$+$\overrightarrow{PG}•\overrightarrow{GC}$)
=3|$\overrightarrow{PG}$|2+(|$\overrightarrow{GA}$|2+|$\overrightarrow{GB}$|2+|$\overrightarrow{GC}$|2)+2$\overrightarrow{PG}$•($\overrightarrow{GA}$+$\overrightarrow{GB}$+$\overrightarrow{GC}$)
=3|$\overrightarrow{PG}$|2+(|$\overrightarrow{GA}$|2+|$\overrightarrow{GB}$|2+|$\overrightarrow{GC}$|2)+2$\overrightarrow{PG}$•($\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}$)
=3|$\overrightarrow{PG}$|2+(|$\overrightarrow{GA}$|2+|$\overrightarrow{GB}$|2+|$\overrightarrow{GC}$|2)
≥|$\overrightarrow{GA}$|2+|$\overrightarrow{GB}$|2+|$\overrightarrow{GC}$|2,
當且僅當|$\overrightarrow{PG}$|=0 即 P 與 G 重合時,P 到三角形 ABC 的距離的平方和最小.
∴到一個三角形的三個頂點的距離的平方和最小的點,是這個三角形的重心.
故選:D.
點評 本題考查三角形五心\向量等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數與方程思想,是中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {2,4,6} | B. | {1,3,5} | C. | {0,2,4,6} | D. | {x∈Z|0≤x≤6} |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
讀者/作家 | 男作家 | 女作家 | 合計 |
男讀者 | 142 | 122 | 264 |
女讀者 | 103 | 133 | 236 |
合計 | 245 | 255 | 500 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com