考點(diǎn):等差數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:(1)根據(jù)等差數(shù)列的性質(zhì)與前n項(xiàng)和,求出首項(xiàng)與公差,寫出通項(xiàng)公式;
(2)寫出數(shù)列{
}的通項(xiàng)公式,求出前n項(xiàng)和T
n.
解答:
解:(1)在等差數(shù)列{a
n}中,前n項(xiàng)和為S
n,S
3=a
4+6,
且a
1,a
4,a
13成等比數(shù)列;
∴
,
即
| 3a1+3d=a1+3d+6 | (a1+3d)2=a1(a1+12d) |
| |
;
解得a
1=3,d=0或d=2;
當(dāng)d=0時(shí),a
n=3;
當(dāng)d=2時(shí),a
n=3+2(n-1)=2n+1;
(2)當(dāng)d=0時(shí),a
n=3,s
n=3n,
∴
=
,
前n項(xiàng)和為T
n=
+
+…+
;
當(dāng)d=2時(shí),a
n=3+2(n-1)=2n+1,
s
n=
=n(n+2),
∴
=
=
(
-
),
∴前n項(xiàng)和為
T
n=
(1-
)+
(
-
)+
(
-
)+…+
(
-
)+
(
-
)
=
(1+
-
-
)
=
.
點(diǎn)評:本題考查了等差數(shù)列的應(yīng)用問題,解題時(shí)應(yīng)熟記等差數(shù)列的通項(xiàng)公式與求出前n項(xiàng)和公式,是計(jì)算題.