【題目】如圖,在正三棱柱ABC-A1B1C1中,AB=AA1=2,點P,Q分別為A1B1,BC的中點.
(1)求異面直線BP與AC1所成角的余弦值;
(2)求直線CC1與平面AQC1所成角的正弦值.
【答案】(1)
(2)
【解析】分析:(1)先建立空間直角坐標系,設(shè)立各點坐標,根據(jù)向量數(shù)量積求得向量的夾角,再根據(jù)向量夾角與異面直線所成角的關(guān)系得結(jié)果;(2)利用平面的方向量的求法列方程組解得平面的一個法向量,再根據(jù)向量數(shù)量積得向量夾角,最后根據(jù)線面角與所求向量夾角之間的關(guān)系得結(jié)果.
詳解:如圖,在正三棱柱ABCA1B1C1中,設(shè)AC,A1C1的中點分別為O,O1,則OB⊥OC,OO1⊥OC,OO1⊥OB,以為基底,建立空間直角坐標系Oxyz.
因為AB=AA1=2,
所以.
(1)因為P為A1B1的中點,所以,
從而,
故.
因此,異面直線BP與AC1所成角的余弦值為.
(2)因為Q為BC的中點,所以,
因此,.
設(shè)n=(x,y,z)為平面AQC1的一個法向量,
則即
不妨取,
設(shè)直線CC1與平面AQC1所成角為,
則,
所以直線CC1與平面AQC1所成角的正弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,過焦點且斜率存在的直線與拋物線交于兩點,且點在點上方,點與點關(guān)于軸對稱.
(1)求證:直線過某一定點;
(2)當直線的斜率為正數(shù)時,若以為直徑的圓過,求的內(nèi)切圓與的外接圓的半徑之比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面四邊形中(如圖1),為的中點,,,且,,現(xiàn)將此平面四邊形沿折起使二面角為直二面角,得到立體圖形(如圖2),又為平面內(nèi)一點,并且為正方形,設(shè),,分別為,,的中點.
(Ⅰ)求證:面面;
(Ⅱ)在線段上是否存在一點,使得面與面所成二面角的余弦值為?若存在,求線段的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是奇函數(shù).
(1)求實數(shù)的值;
(2)若,對任意有恒成立,求實數(shù)取值范圍;
(3)設(shè),若,問是否存在實數(shù)使函數(shù)在上的最大值為?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊狀的楔體,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長為1,則該楔體的體積為( )
A. 10000立方尺 B. 11000立方尺
C. 12000立方尺 D. 13000立方尺
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場按月訂購一種家用電暖氣,每銷售一臺獲利潤200元,未銷售的產(chǎn)品返回廠家,每臺虧損50元,根據(jù)往年的經(jīng)驗,每天的需求量與當天的最低氣溫有關(guān),如果最低氣溫位于區(qū)間,需求量為100臺;最低氣溫位于區(qū)間,需求量為200臺;最低氣溫位于區(qū)間,需求量為300臺。公司銷售部為了確定11月份的訂購計劃,統(tǒng)計了前三年11月份各天的最低氣溫數(shù)據(jù),得到下面的頻數(shù)分布表:
最低氣溫(℃) | |||||
天數(shù) | 11 | 25 | 36 | 16 | 2 |
以最低氣溫位于各區(qū)間的頻率代替最低氣溫位于該區(qū)間的概率.
求11月份這種電暖氣每日需求量(單位:臺)的分布列;
若公司銷售部以每日銷售利潤(單位:元)的數(shù)學期望為決策依據(jù),計劃11月份每日訂購200臺或250臺,兩者之中選其一,應選哪個?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三個班共有學生100人,為調(diào)查他們的體育鍛煉情況,通過分層抽樣獲取了部分學生一周的鍛煉時間,數(shù)據(jù)如下表(單位:小時).
班 | 6 | 7 | ||
班 | 6 | 7 | 8 | |
班 | 5 | 6 | 7 | 8 |
(Ⅰ)試估計班學生人數(shù);
(Ⅱ)從班和班抽出來的學生中各選一名,記班選出的學生為甲,班選出的學生為乙,若學生鍛煉相互獨立,求甲的鍛煉時間大于乙的鍛煉時間的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com