【題目】某商場按月訂購一種家用電暖氣,每銷售一臺獲利潤200元,未銷售的產(chǎn)品返回廠家,每臺虧損50元,根據(jù)往年的經(jīng)驗,每天的需求量與當天的最低氣溫有關(guān),如果最低氣溫位于區(qū)間,需求量為100臺;最低氣溫位于區(qū)間,需求量為200臺;最低氣溫位于區(qū)間,需求量為300臺。公司銷售部為了確定11月份的訂購計劃,統(tǒng)計了前三年11月份各天的最低氣溫數(shù)據(jù),得到下面的頻數(shù)分布表:

最低氣溫(℃)

天數(shù)

11

25

36

16

2

以最低氣溫位于各區(qū)間的頻率代替最低氣溫位于該區(qū)間的概率.

求11月份這種電暖氣每日需求量(單位:臺)的分布列;

若公司銷售部以每日銷售利潤(單位:元)的數(shù)學期望為決策依據(jù),計劃11月份每日訂購200臺或250臺,兩者之中選其一,應選哪個?

【答案】(1)X的分布列為

X

100

200

300

P

0.2

0.4

0.4

(2)11月每日應訂購250.

【解析】試題分析:(1)由題意,易知離散型隨機變量X的可能取值為100,200,300,根據(jù)“頻率代替概率”分別求出各值對應的概率,從而可列出X的分布列;(2)根據(jù)題意,由隨機變量的期望值公式,分別算出訂購200臺,250臺的數(shù)學期望進行比較,從而可確定訂購250臺時所得期望值最大.

試題解析:(1)由已知X的可能取值為100,200,300

X的分布列為

X

100

200

300

P

0.2

0.4

0.4

(2) 由已知

當訂購200臺時,

E((元)

當訂購250臺時,

E(

(元)

綜上所求,當訂購臺時,Y的數(shù)學期望最大,11月每日應訂購250臺。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過點作拋物線的兩條切線,切點分別為,直線的斜率為2.

(1)求拋物線的標準方程;

(2)與圓相切的直線,與拋物線交于兩點,若在拋物線上存在點,使,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)若,存在,使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正三棱柱ABC-A1B1C1中,AB=AA1=2,點PQ分別為A1B1,BC的中點.

(1)求異面直線BPAC1所成角的余弦值;

(2)求直線CC1與平面AQC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合按照對應關(guān)系不能構(gòu)成從AB的映射的是( ).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某保險公司的推銷員中隨機抽取50名,統(tǒng)計這些推銷員某月的月銷售額(單位:千元),由統(tǒng)計結(jié)果得如圖頻數(shù)分別表:

月銷售額

分組

[12.25,14.75)

[14.75,17.25)

[17.25,19.75)

[19.75,22.25)

[22.25,24.75)

頻數(shù)

4

10

24

8

4

(1)作出這些數(shù)據(jù)的頻率分布直方圖;

(2)估計這些推銷員的月銷售額的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點作代表);

(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),公司將推銷員的月銷售指標確定為17.875千元,試判斷是否有60%的職工能夠完成該銷售指標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三角形中,,是邊長為l的正方形,平面底面,若分別是的中點.

(1)求證:底面

(2)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為.

(1)寫出直線的普通方程及曲線的直角坐標方程;

(2)已知點,點,直線過點且與曲線相交于,兩點,設線段的中點為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知在四棱錐中,平面,點在棱上,且,底面為直角梯形, 分別是的中點.

(1)求證://平面;

(2)求直線與平面所成角的正弦值;

(3)求點到平面的距離.

查看答案和解析>>

同步練習冊答案