分析 觀察已知式子的規(guī)律,并改寫形式,歸納可得N(n,k)=$\frac{k-2}{2}$n2+$\frac{4-k}{2}$n,把n=10,k=16代入可得答案.
解答 解:原已知式子可化為:N(n,3)=$\frac{1}{2}$n2+$\frac{1}{2}$n=$\frac{3-2}{2}$n2+$\frac{4-3}{2}$n,
N(n,4)=n2=$\frac{4-2}{2}$n2+$\frac{4-4}{2}$n;
…
由歸納推理可得N(n,k)=$\frac{k-2}{2}$n2+$\frac{4-k}{2}$n,
故N(10,16)=$\frac{16-2}{2}×1{0}^{2}+\frac{4-16}{2}×10$=660,
故答案為:660.
點(diǎn)評 歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達(dá)的一般性命題(猜想).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | (0,1) | C. | (1,5) | D. | [1,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向右平移$\frac{1}{2}$個單位長度 | B. | 向右平移$\frac{π}{6}$個單位長度 | ||
C. | 向左平移$\frac{1}{2}$個單位長度 | D. | 向左平移$\frac{π}{6}$個單位長度 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [3,4] | B. | [5,7] | C. | [4,6] | D. | [7,8] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | (0,+∞) | C. | (-∞,1) | D. | (1,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com