7.等差數(shù)列{an}中,若a3=7,a7=3,則a10=0.

分析 利用等差數(shù)列的通項公式即可得出.

解答 解:設等差數(shù)列{an}的公差為d,∵a3=7,a7=3,
∴a1+2d=7,a1+6d=3,解得a1=9,d=-1.
則a10=9-(10-1)=0.
故答案為:0.

點評 本題考查了等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=aln(x+1)-ax-x2
(1)若x=1為函數(shù)f(x)的極值點,求a的值;
(2)討論f(x)在定義域上的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如圖是容量為n的樣本的頻率分布直方圖,已知樣本數(shù)據在[14,18)內的頻數(shù)是12,則樣本數(shù)據落在[6,10)的頻數(shù)是( 。
A.12B.16C.18D.20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知函數(shù)f(x)是定義在R上的奇函數(shù),且滿足f(x+2)=-f(x),當0≤x≤1時,f(x)=$\frac{1}{2}$x,則函數(shù)g(x)=f(x)+$\frac{1}{2}$的零點是( 。
A.2n(n∈Z)B.2n-1(n∈Z)C.4n+1(n∈Z)D.4n-1(n∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下列不等式中,解集為R的是( 。
A.x2+4x+4>0B.|x|>0C.x2>-xD.x2-x+$\frac{1}{4}$≥0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.古希臘畢達哥拉斯學派的數(shù)學家研究過各種多邊形數(shù),如三角形數(shù)1,3,6,10…,第n個三角形數(shù)為$\frac{n(n+1)}{2}$=$\frac{1}{2}$n2+$\frac{1}{2}$n,記第n個k邊形數(shù)為N(n,k)(k≥3),以下列出了部分k邊形數(shù)中第n個數(shù)的表達式:
三角形數(shù)N(n,3)=$\frac{1}{2}$n2+$\frac{1}{2}$n
正方形數(shù)N(n,4)=n2
五邊形數(shù)N(n,5)=$\frac{3}{2}$n2-$\frac{1}{2}$n
六邊形數(shù)N(n,6)=2n2-n

可以推測N(n,k)的表達式,由此計算N(10,16)=660.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知等差數(shù)列{an}的前n項和為Sn,且a1,$\sqrt{6}$a1,S5成等比數(shù)列,則$\frac{{{S_{10}}}}{S_5}$=$\frac{29}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)f(x)=$\frac{1}{2}$ax2-(2a+1)x+2lnx(a∈R).g(x)=x2-2x,若對任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),則a的取值范圍是a>ln2-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.在驗證吸煙與否與患肺炎與否有關的統(tǒng)計中,根據計算結果,有99.5%的把握認為這兩件事情有關,那么K2的一個可能取值為( 。
P(k2>k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.845.0246.6357.87910.83
A.6.785B.5.802C.9.697D.3.961

查看答案和解析>>

同步練習冊答案