過點A(4,1)且在兩坐標軸上的截距相等的直線方程是

A.xy=5

B.xy=5

C.xy=5或x-4y=0

D.xy=5或x+4y=0

解析:設過點A(4,1)的直線方程為y-1=k(x-4)(k≠0).令x=0,得y=1-4k;令y=0,得x=4-.由已知得1-4k=4-,∴k=-1或k=.∴所求直線方程為xy-5=0或x-4y=0.

此題若用截距式研究則應討論截距均為0的情況.

答案:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

過點A(4,1)且在兩坐標軸上的截距相等的直線的方程是(    )

A.x+y=5                                    B.x-y=5

C.x+y=5或x-4y=0                      D.x-y=5或x+4y=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動圓過定點A(4,0),且在y軸上截得的弦MN的長為8.

(1)求動圓圓心的軌跡C的方程.

(2)已知點B(-1,0),設不垂直于x軸的直線l與軌跡C交于不同的兩點P,Q,若x軸是∠PBQ的角平分線,證明直線l過定點.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年全國普通高等學校招生統(tǒng)一考試理科數(shù)學(陜西卷解析版) 題型:解答題

已知動圓過定點A(4,0), 且在y軸上截得的弦MN的長為8.

(Ⅰ) 求動圓圓心的軌跡C的方程;

(Ⅱ) 已知點B(-1,0), 設不垂直于x軸的直線l與軌跡C交于不同的兩點P, Q, 若x軸是的角平分線, 證明直線l過定點.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求過點A(4,1),且在坐標軸上截距相等的直線l的方程.

查看答案和解析>>

同步練習冊答案