函數(shù)y=+x(x>0)的反函數(shù)為

A.y=(x>1)                      B.y=1-x22x(x>1)

C.y=(x∈R)                      D.y=(x∈R)

A?

解析:y=+x,y-x=,y2-2xy=1.?

x=.

∴其反函數(shù)為y=.?

∵原函數(shù)x>0,∴y>1.?

∴其反函數(shù)為y=(x>1),選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)y=f(x)(x∈R),給出下列命題:
(1)在同一直角坐標系中,函數(shù)y=f(1-x)與y=f(x-1)的圖象關(guān)于直線x=0對稱;
(2)若f(1-x)=f(x-1),則函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱;
(3)若f(1+x)=f(x-1),則函數(shù)y=f(x)是周期函數(shù);
(4)若f(1-x)=-f(x-1),則函數(shù)y=f(x)的圖象關(guān)于點(0,0)對稱.
其中所有正確命題的序號是
(3)(4)
(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=|x|與函數(shù)y=(
x
)2
表示同一個函數(shù);
②已知函數(shù)f(x+1)=x2,則f(e)=e2-1
③已知函數(shù)f(x)=4x2+kx+8在區(qū)間[5,20]上具有單調(diào)性,則實數(shù)k的取值范圍是(-∞,40]∪[160,+∞)
④已知f(x)、g(x)是定義在R上的兩個函數(shù),對任意x、y∈R滿足關(guān)系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0時f(x)•g(x)≠0則函數(shù)f(x)、g(x)都是奇函數(shù).
其中正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x+有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,]上是減函數(shù),在[,+∞)上是增函數(shù).

(1)如果函數(shù)y=x+(x>0)的值域為[6,+∞),求b的值;

(2)研究函數(shù)y=x2+(常數(shù)c>0)在定義域內(nèi)的單調(diào)性,并說明理由;

(3)對函數(shù)y=x+和y=x2+(常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例,研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)f(x)=(x2+)n+(+x)n(n是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你的研究結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年江蘇省常州市教育學(xué)會高三1月學(xué)業(yè)水平監(jiān)測數(shù)學(xué)試題(解析版) 題型:解答題

對于函數(shù)y=f(x)(x∈R),給出下列命題:
(1)在同一直角坐標系中,函數(shù)y=f(1-x)與y=f(x-1)的圖象關(guān)于直線x=0對稱;
(2)若f(1-x)=f(x-1),則函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱;
(3)若f(1+x)=f(x-1),則函數(shù)y=f(x)是周期函數(shù);
(4)若f(1-x)=-f(x-1),則函數(shù)y=f(x)的圖象關(guān)于點(0,0)對稱.
其中所有正確命題的序號是   

查看答案和解析>>

同步練習(xí)冊答案