在平面直角坐標系中,動點滿足:點到定點與到軸的距離之差為.記動點的軌跡為曲線.
(1)求曲線的軌跡方程;
(2)過點的直線交曲線于、兩點,過點和原點的直線交直線于點,求證:直線平行于軸.
(1).;(2).詳見解析;
解析試題分析:(1)依題意知,動點滿足:點到定點與到軸的距離之差為,由此可得,進而求曲線C方程;
(2)法Ⅰ:設,求出直線的方程為,將直線與拋物線方程聯(lián)立得,得,求出直線的方程為 進而點的坐標為 直線平行于軸;
法Ⅱ:設的坐標為,求出的方程為得到點的縱坐標為, 由于, 則直線的方程為得點的縱坐標為,則軸;當時,結論也成立,故命題得證.
試題解析:(1)依題意: 2分
4分
6分
注:或直接用定義求解.
(2)法Ⅰ:設,直線的方程為
由 得 8分
直線的方程為 點的坐標為 10分
直線平行于軸. 13分
法Ⅱ:設的坐標為,則的方程為
點的縱坐標為, 8分
直線的方程為
點的縱坐標為. 11分
軸;當時,結論也成立,
直線平行于軸. 13分.
考點:1. 軌跡方程;2. 直線與圓錐曲線的綜合問題.
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中,已知對于任意實數(shù)k,直線(k+1)x+(k-)y-(3k+)=0恒過定點F.設橢圓C的中心在原點,一個焦點為F,且橢圓C上的點到F的最大距離為2+.
(1)求橢圓C的方程;
(2)設(m,n)是橢圓C上的任意一點,圓O:x2+y2=r2(r>0)與橢圓C有4個相異公共點,試分別判斷圓O與直線l1:mx+ny=1和l2:mx+ny=4的位置關系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,焦距為的橢圓的兩個頂點分別為和,且與n,共線.
(1)求橢圓的標準方程;
(2)若直線與橢圓有兩個不同的交
點和,且原點總在以為直徑的圓的內(nèi)部,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓:的左焦點為,且過點.
(1)求橢圓的方程;
(2)設過點P(-2,0)的直線與橢圓E交于A、B兩點,且滿足.
①若,求的值;
②若M、N分別為橢圓E的左、右頂點,證明:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設橢圓C:=1(a>b>0)的離心率e=,右焦點到直線=1的距離d=,O為坐標原點.
(1)求橢圓C的方程;
(2)過點O作兩條互相垂直的射線,與橢圓C分別交于A,B兩點,證明,點O到直線AB的距離為定值,并求弦AB長度的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知定點,曲線C是使為定值的點的軌跡,曲線過點.
(1)求曲線的方程;
(2)直線過點,且與曲線交于,當的面積取得最大值時,求直線的方程;
(3)設點是曲線上除長軸端點外的任一點,連接、,設的角平分線交曲線的長軸于點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設橢圓的方程為 ,斜率為1的直線不經(jīng)過原點,而且與橢圓相交于兩點,為線段的中點.
(1)問:直線與能否垂直?若能,之間滿足什么關系;若不能,說明理由;
(2)已知為的中點,且點在橢圓上.若,求橢圓的離心率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知橢圓的右頂點為A(2,0),點P(2e,)在橢圓上(e為橢圓的離心率).
(1)求橢圓的方程;
(2)若點B,C(C在第一象限)都在橢圓上,滿足,且,求實數(shù)λ的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com