設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過原點,而且與橢圓相交于兩點,為線段的中點.
(1)問:直線能否垂直?若能,之間滿足什么關(guān)系;若不能,說明理由;
(2)已知的中點,且點在橢圓上.若,求橢圓的離心率.

(1)直線不能垂直;(2)

解析試題分析:(1)設(shè)直線的方程為,與橢圓方程聯(lián)立,消去整理為關(guān)于的一元二次方程,因為有兩個交點則判別式應(yīng)大于0,由韋達定理可得根與系數(shù)的關(guān)系,用中點坐標(biāo)公式求點的坐標(biāo)。求出直線的斜率,假設(shè)兩直線垂直則斜率相乘等于,解出的關(guān)系式,根據(jù)關(guān)系式及橢圓中的關(guān)系判斷假設(shè)成立與否。(2)∵M為ON的中點,M為AB的中點,∴四邊形OANB為平行四邊形.
,∴四邊形OANB為矩形,∴,轉(zhuǎn)化為向量問題,可得的關(guān)系式。由中點坐標(biāo)公式可得點的坐標(biāo),將其代入橢圓方程,與上式聯(lián)立消去即可得之間滿足的關(guān)系式。將代入之間的關(guān)系式,可求其離心率。
試題解析:解答:(1)∵斜率為1的直線不經(jīng)過原點,而且與橢圓相交于兩點,
∴可以設(shè)直線的方程為.
,∴,
.    ①             1分
∵直線與橢圓相交于兩點,∴

. ②          2分
.  ③              3分
為線段的中點,∴,
,∴.     4分
假設(shè)直線能垂直.
∵直線的斜率為1,∴直線的斜率為-1,
,∴.                  5分
∵在橢圓方程中,,
∴假設(shè)不正確,在橢圓中直線不能垂直.             6分
(2)∵M為ON的中點,M為AB的中點,∴四邊形OANB為平行四邊形.
,∴四邊形OANB為矩形,∴,         7分
,∴,∴,
,
,整理得.   8分
點在橢圓上,∴,∴.    9分
此時,滿足,
消去,即.            10分
設(shè)橢圓的離心率為e,則,∴
,∴,
,∵

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率與雙曲線的離心率互為倒數(shù),直線與以原點為圓心,以橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點為,右焦點為,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段垂直平分線交于點,求點的軌跡的方程;
(3)設(shè)第(2)問中的軸交于點,不同的兩點上,且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,動點滿足:點到定點與到軸的距離之差為.記動點的軌跡為曲線.
(1)求曲線的軌跡方程;
(2)過點的直線交曲線、兩點,過點和原點的直線交直線于點,求證:直線平行于軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點在坐標(biāo)原點,焦點軸上,拋物線上的點的距離為2,且的橫坐標(biāo)為1.直線與拋物線交于,兩點.
(1)求拋物線的方程;
(2)當(dāng)直線,的傾斜角之和為時,證明直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中心在原點,焦點在坐標(biāo)軸上的雙曲線經(jīng)過兩點
(1)求雙曲線的方程;
(2)設(shè)直線交雙曲線、兩點,且線段被圓三等分,求實數(shù)、的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,直線與圓相切.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓的交點為,求弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

拋物線,其準線方程為,過準線與軸的交點做直線交拋物線于兩點.
(1)若點中點,求直線的方程;
(2)設(shè)拋物線的焦點為,當(dāng)時,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓上的點到左右兩焦點的距離之和為,離心率為.
(1)求橢圓的方程;
(2)過右焦點的直線交橢圓于兩點,若軸上一點滿足,求直線的斜率的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓兩焦點坐標(biāo)分別為,,且經(jīng)過點
(Ⅰ)求橢圓的標(biāo)準方程;
(Ⅱ)已知點,直線與橢圓交于兩點.若△是以為直角頂點的等腰直角三角形,試求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案