已知橢圓兩焦點(diǎn)坐標(biāo)分別為,,且經(jīng)過點(diǎn)
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn),直線與橢圓交于兩點(diǎn).若△是以為直角頂點(diǎn)的等腰直角三角形,試求直線的方程.

(Ⅰ)(Ⅱ).

解析試題分析:(Ⅰ)由橢圓的定義可求得,再根據(jù),可求得。即可求出橢圓方程。(Ⅱ)由點(diǎn)斜式設(shè)出直線方程,然后聯(lián)立,消掉(或)得到關(guān)于的一元二次方程。因?yàn)橛袃蓚(gè)交點(diǎn)所以判別式大于0,再根據(jù)韋達(dá)定理得出根與系數(shù)的關(guān)系。根據(jù)題意可知。用這兩個(gè)條件可列出兩個(gè)方程。如用直線垂直來解需討論斜率存在與否,為了省去討論可轉(zhuǎn)化為向量垂直問題用數(shù)量積公式求解, 注意討論根的取舍。
試題解析:解:(Ⅰ)設(shè)橢圓標(biāo)準(zhǔn)方程為.依題意
,所以
,所以
于是橢圓的標(biāo)準(zhǔn)方程為.                       5分
(Ⅱ)依題意,顯然直線斜率存在.設(shè)直線的方程為,則

因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3c/9/1gran2.png" style="vertical-align:middle;" />,得.        ①
設(shè),線段中點(diǎn)為,則
于是
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7b/1/7wccx1.png" style="vertical-align:middle;" />,線段中點(diǎn)為,所以
(1)當(dāng),即時(shí),
,整理得.           ②
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/06/0/viti12.png" style="vertical-align:middle;" />,,
所以
,
整理得,解得
當(dāng)時(shí),由②不合題意舍去.
由①②知,時(shí),
(2)當(dāng)時(shí),
(。┤時(shí),直線的方程為,代入橢圓方程中得.
設(shè),,依題意,若△為等腰直角三角形,則
.即,解得.不合題意舍去,
即此時(shí)直線的方程為.
(ⅱ)若時(shí),即直線過原點(diǎn).依橢圓的對(duì)稱性有,則依題意不能有,即此時(shí)不滿足△為等腰直角三角形.
綜上,直線的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過原點(diǎn),而且與橢圓相交于兩點(diǎn),為線段的中點(diǎn).
(1)問:直線能否垂直?若能,之間滿足什么關(guān)系;若不能,說明理由;
(2)已知的中點(diǎn),且點(diǎn)在橢圓上.若,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓的右頂點(diǎn)為A(2,0),點(diǎn)P(2e,)在橢圓上(e為橢圓的離心率).

(1)求橢圓的方程;
(2)若點(diǎn)B,C(C在第一象限)都在橢圓上,滿足,且,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知過點(diǎn)的橢圓的右焦點(diǎn)為,過焦點(diǎn)且與軸不重合的直線與橢圓交于,兩點(diǎn),點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)為,直線,分別交橢圓的右準(zhǔn)線,兩點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)的坐標(biāo)為,試求直線的方程;
(3)記,兩點(diǎn)的縱坐標(biāo)分別為,試問是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知是橢圓的右焦點(diǎn);圓軸交于兩點(diǎn),其中是橢圓的左焦點(diǎn).

(1)求橢圓的離心率;
(2)設(shè)圓軸的正半軸的交點(diǎn)為,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),試判斷直線與圓的位置關(guān)系;
(3)設(shè)直線與圓交于另一點(diǎn),若的面積為,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線和⊙,過拋物線上一點(diǎn)作兩條直線與⊙相切于兩點(diǎn),分別交拋物線為E、F兩點(diǎn),圓心點(diǎn)到拋物線準(zhǔn)線的距離為

(1)求拋物線的方程;
(2)當(dāng)的角平分線垂直軸時(shí),求直線的斜率;
(3)若直線軸上的截距為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,以兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)為頂點(diǎn)的四邊形是一個(gè)面積為的正方形(記為
(Ⅰ)求橢圓的方程
(Ⅱ)設(shè)點(diǎn)是直線軸的交點(diǎn),過點(diǎn)的直線與橢圓相交于兩點(diǎn),當(dāng)線段的中點(diǎn)落在正方形內(nèi)(包括邊界)時(shí),求直線斜率的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的左、右焦點(diǎn)分別為,橢圓的離心率為,且橢圓C經(jīng)過點(diǎn)
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若線段是橢圓過點(diǎn)的弦,且,求內(nèi)切圓面積最大時(shí)實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,其左焦點(diǎn)到點(diǎn)的距離為.
(1)求橢圓的方程;
(2)過右焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,則內(nèi)切圓的圓面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案